Fuel System

GENERAL

GASOLINE ENGINE CONTROL SYSTEM

ETC (ELECTRONIC THROTTLE CONTROL) SYSTEM

MASS AIR FLOW SENSOR (MAFS)

INTAKE AIR TEMPERATURE SENSOR (IATS)
MANIFOLD ABSOLUTE PRESSURE SENSOR

(MAPS)

ENGINE COOLANT TEMPERATURE SENSOR

(ECTS)

CAMSHAFT POSITION SENSOR (CMPS)
CRANKSHAFT POSITION SENSOR (CKPS)

HEATED OXYGEN SENSOR (HO2S)

KNOCK SENSOR (KS)

INJECTOR

CVVT OIL CONTROL VALVE (OCV)
CVVT OIL TEMPERATURE SENSOR(OTS)
PURGE CONTROL SOLENOID VALVE (PCSV)
VARIABLE INTAKE SOLENOID (VIS) VALVE
ACCELERATOR POSITION SENSOR (APS)
POWERTRAIN CONTROL MODULE (PCM)

DTC TROUBLESHOOTING PROCEDURES

FUEL DELIVERY SYSTEM

FUEL PUMP FUEL TANK FILLER-NECK ASSEMBLY ACCELERATOR PEDAL

شرکت دیجیتال خودرو سامانه (مسئولیت محدود

ولین سامانه دیجیتال تعمیرکاران خودرو در ایران

FL -2 FUEL SYSTEM

GENERAL FL -3

GENERAL

SPECIFICATION E7287EDD

FUEL DELIVERY SYSTEM

Items	Spe	cification
Fuel Tank	Capacity	70 lit. (18.4 U.S.gal., 15.4 lmp. gal.)
Fuel Filter (built in Fuel Pump assembly)	Туре	High pressure type
Fuel Pressure Regulator (built in Fuel Pump assembly)	Regulated Fuel Pressure	375 ~ 385 kPa(3.82 ~ 3.92 kgf/ cm², 54.3 ~ 55.8 psi)
Fuel Pump	Туре	
Fuel Pump	Driven by	Electric motor

SENSOR

MASS AIR FLOW SENSOR (MAFS)

Type: Hot-film type Specification

Air Flow (kg/h)	Frequency (Hz)
12.6 kg/h	2,617Hz
18.0 kg/h	2,958Hz
23.4 kg/h	3,241Hz
32.4 kg/h	ے 3,653Hz
43.2 kg/h	4,024Hz
57.6 kg/h	4,399Hz
72.0 kg/h	4,704Hz
108.0 kg/h	5,329Hz
144.0 kg/h	5,897Hz
198.0 kg/h	6,553Hz
270.0 kg/h	7,240Hz
360.0 kg/h	7,957Hz
486.0 kg/h	8,738Hz
666.0 kg/h	9,644Hz
900.0 kg/h	10,590Hz

INTAKE AIR TEMPERATURE SENSOR (IATS)

Type: Thermistor type Specification

Temperature		
	Q	Resistance (kΩ)
-40	-40	100.87kΩ
-20	-4	28.58kΩ
0	32	9.40 kΩ
10	50	5. <mark>66kΩ</mark>
20	68	3.51 kΩ
40	104	1.47kΩ
60	140	0.67kΩ
80	176	0.33kΩ

MANIFOLD ABSOLUTE PRESSURE SENSOR (MAPS)

Type: Piezo-resistive pressure type Specification

Pressure (kPa)	Output Voltage (V)
20.0kPa	0.79V
46.66kPa	1.84V
101.32kPa	4.00V

FL -4 FUEL SYSTEM

ENGINE COOLANT TEMPERATURE SENSOR (ECTS)

Type: Thermistor type

Specification

Temperature		
		Resistance (kΩ)
-40	-40	48.14kΩ
-20	-4	14.13 ~ 16.83kΩ
0	32	5.79kΩ
20	68	2.31 ~ 2.59kΩ
40	104	1.15kΩ
60	140	0.59kΩ
80	176	0.32kΩ

THROTTLE POSITION SENSOR (TPS)

Type: Variable resistor type

Specification (When reference voltage = 5.0V)

Throttle Angle	Output V	oltage(V)
(°)	TPS1	TPS2
رو در این ن	میرکا ۱۷ خود	5.0V
10°	0.5V	4.5V
20°	0.9V	4.1V
30°	1.4V	3.6V
40°	1.8V	3.2V
50°	2.3V	2.7V
60°	2.7V	2.3V
70°	3.2V	1.8V
80°	3.6V	1.4V
90°	4.1V	0.9V
100°	4.5V	0.5V
110°	5.0V	0V

Item	Sensor Resistance (kΩ)
TPS1	$4.0 \sim 6.0$ kΩ at 20 (68)
TPS2	2.72 ~ 4.08kΩ at 20 (68)

ACCELERATOR POSITION SENSOR (APS)

Type: Variable resistor type

Specification (When reference voltage = 5.0V)

Accelerator	Output Voltage (V)	
Position	APS1	APS2
C.T	0.7 ~ 0.8V	0.275 ~ 0.475V
W.O.T	3.8 ~ 4.4V	1.75 ~ 2.35V

Item	Sensor Resistance (kΩ)
APS1	$0.7 \sim 1.3 \text{k}\Omega$ at 20 (68)
APS2	1.4 ~ 2.6kΩ at 20 (68)

HEATED OXYGEN SENSOR (HO2S)

Type: Zirconia (ZrO2) type

Specification

A/F Ratio	Output Voltage (V)
RICH	0.75 ~ 1.00V
LEAN	0 ~ 0.12V

Item	Resistance ()
Sensor Heater	8.1 ~ 11.1 at 21 (69.8)

CAMSHAFT POSITION SENSOR (CMPS)

Type: Hall effect type

Specification

Item	Specification
Output Valtage (V)	High: 5.0V
Output Voltage (V)	Low: 0.7V
Air Gap (mm)	0.5 ~ 1.5mm

CRANKSHAFT POSITION SENSOR (CKPS)

Type: Magnetic field sensitive type

Specification

Item Specification			
Coil Resistance ()	630 ~ 770 at 20 (68)		
Air Gap (mm)	0.5 ~ 1.5mm		

GENERAL FL -5

KNOCK SENSOR (KS)

Type: Piezo-electricity type

Specification

Item	Specification	
Capacitance (pF)	1,480 ~ 2,220pF	

CVVT OIL TEMPERATURE SENSOR (OTS)

Type: Thermistor type

Specification

Temperature			
		Resistance (kΩ)	
-20	-4	16.52kΩ	
20	68	2.45kΩ	
80	176	0.29kΩ	

ACTUATORS

INJECTOR

Number: 6 Specification

ltem	Specification	
Coil Resistance ()	11.4 ~ 12.6 at 20 (68)	

PURGE CONTROL SOLENOID VALVE (PCSV)

Type: Duty control type

Specification

Item	Specification	
Coil Resistance ()	19.0 ~ 22.0 at 20 (68)	

VARIABLE INTAKE SOLENOID (VIS) VALVE

Specification

Item	Specification	
Coil Resistance ()	30.0 ~ 35.0Ω [22 (71.6)]	

CVVT OIL CONTROL VALVE (OCV)

Specification

Item	Specification		
Coil Resistance ()	6.7 ~ 7.7 at 20 (68)		

ETC MOTOR

Specification

Item	Specification		
Coil Resistance ()	1.275 ~ 1.725 at 20 (68)		

FL -6 FUEL SYSTEM

IGNITION COIL

Type: Stick type Specification

Item	Specification		
1st Coil Resistance ()	0.62Ω±10% at 20	(68)
2nd Coil Resistance (k Ω)	7.0kΩ±15% at 20	(68)

GENERAL FL-7

SERVICE STANDARD E393CE90

Ignition Timing	BTDC 10° ± 5°		
	A/CON OFF	Neutral,N,P-range	
Idle Speed		D-range	650 + 100 rpm
	A/CON ON	Neutral,N,P-range	650 ± 100 rpm
		D-range	

TIGHTENING TORQUES E53C4B54

ENGINE CONTROL SYSTEM

Item	Kgf-m	N-m	lbf-ft
PCM installation bolts	1.0 ~ 1.2	9.8 ~ 11.8	7.2 ~ 8.7
Heated oxygen sensor (Bank 1 / Sensor 1) installation	5.0 ~ 6.0	49.1 ~ 58.9	36.2 ~ 43.4
Heated oxygen sensor (Bank 1 / Sensor 2) installation	5.0 ~ 6.0	49.1 ~ 58.9	36.2 ~ 43.4
Heated oxygen sensor (Bank 2 / Sensor 1) installation	5.0 ~ 6.0	49.1 ~ 58.9	36.2 ~ 43.4
Heated oxygen sensor (Bank 2 / Sensor 2) installation	5.0 ~ 6.0	49.1 ~ 58.9	36.2 ~ 43.4
Engine coolant temperature sensor installation	2.0 ~ 4.0	19.6 ~ 39.2	14.5 ~ 28.9
Manifold absolute pressure sensor installation bolt	0.9 ~ 1.2	8.8 ~ 11.8	6.5 ~ 8.7
Camshaft position sensor [Bank 1] installation bolt	0.7 ~ 1.0	6.9 ~ 9.8	5.1 ~ 7.2
Camshaft position sensor [Bank 2] installation bolt	0.7 ~ 1.0	6.9 ~ 9.8	5.1 ~ 7.2
Crankshaft position sensor installation	0.8 ~ 1.2	7.8 ~ 11.8	5.8 ~ 8.7
Knock sensor #1,2 installation	1.6 ~ 2.4	15.7 ~ 23.5	11.6 ~ 17.4
ETC module installation bolt (on throttle body)	0.7 ~ 1.1	6.9 ~ 10.8	5.1 ~ 8.0
ETC module installation bolt (on ETC stay)	1.6 ~ 2.6	15.7 ~ 25.5	11.6 ~ 18.8
CVVT Oil temperature sensor installation	2.0 ~ 4.0	19.6 ~ 39.2	14.5 ~ 28.9
CVVT Oil control valve [Bank 1] installation bolt	1.0 ~ 1.2	9.8 ~ 11.8	7.2 ~ 8.7
CVVT Oil control valve [Bank 2] installation bolt	1.0 ~ 1.2	9.8 ~ 11.8	7.2 ~ 8.7
Vacuum valve (Variable intake actuator) installation bolts	0.9 ~ 1.2	8.8 ~ 11.8	6.5 ~ 8.7
Ignition coil condenser installation bolt	0.7 ~ 1.1	6.9 ~ 10.8	5.1 ~ 8.0
Ignition coil installation bolt	0.4 ~ 0.6	3.9 ~ 5.9	2.9 ~ 4.3

FUEL DELIVERY SYSTEM

Item	Kgf-m	N·m	lbf-ft
Fuel Tank band mounting nuts	4.0 ~ 5.5	39.2 ~ 53.9	28.9 ~ 39.8
Fuel pump assembly mounting bolts	0.2 ~ 0.3	2.0 ~ 2.9	1.4 ~ 2.2
Accelerator pedal module installation bolts	0.8 ~ 1.2	7.8 ~ 11.8	6.5 ~ 8.7
Delivery pipe installation bolts	0.9 ~ 1.2	8.8 ~ 11.8	6.5 ~ 8.7
2-Way & Fuel-Cut valve installation bolts	0.2 ~ 0.3	2.0 ~2.9	1.4 ~ 2.2

FL -8 FUEL SYSTEM

SPECIAL SERVICE TOOLS EDACF289

Tool (Number and name)	Illustration	Application
09353-24100 Fuel Pressure Gauge	EFDA003A	Measuring the fuel line pressure
09353-38000 Fuel Pressure Gauge Adapter		Connection between the delivery pipe and fuel feed line
•	BF1A025D	
O9353-24000 Fuel Pressure Gauge Connector (393220 Connector)		Connection between Fuel Pressure Gauge (09353-24100) and Fuel Pressure Gauge Adapter (09353-38000)
میرکاران خودرو در ایران	ولین سامانه دیجیتال تـــ EFDA003C	0
09310-2B200 Fuel Pump Plate Cover Wrench		Removing and installing the fuel pump plate cover
	SHDF16100L	

GENERAL FL -9

BASIC TROUBLESHOOTING E530375

BASIC TROUBLESHOOTING GUIDE

1 Bring Vehicle to Workshop

2 Analyze Customer's Problem

Ask the customer about the conditions and environment relative to the issue (Use CUSTOMER PROBLEM ANALYSIS SHEET).

3 Verify Symptom, and then Check DTC and Freeze Frame Data

Connect Hi-Scan (Pro) to Diagnostic Link Connector (DLC). Record the DTC and freeze frame data.

NOTE

To erase DTC and freeze frame data, refer to Step 5.

4 Confirm the Inspection Procedure for the System or Part

Using the SYMPTOM TROUBLESHOOTING GUIDE CHART, choose the correct inspection procedure for the system or part to be checked.

5 Erase the DTC and Freeze Frame Data

WARNING

NEVER erase DTC and freeze frame data before completing Step 2 MIL/DTC in "CUSTOMER PROBLEM ANALYSIS SHEET".

6 Inspect Vehicle Visually

Go to Step 11, if you recognize the problem.

7 Recreate (Simulate) Symptoms of the DTC

Try to recreate or simulate the symptoms and conditions of the malfunction as described by customer. If DTC(s) is/are displayed, simulate the condition according to troubleshooting procedure for the DTC.

8 Confirm Symptoms of Problem

If DTC(s) is/are not displayed, go to Step 9.

If DTC(s) is/are displayed, go to Step 11.

9 Recreate (Simulate) Symptom

Try to recreate or simulate the condition of the malfunction as described by the customer.

10 Check the DTC

If DTC(s) does(do) not occur, refer to INTERMITTENT PROBLEM PROCEDURE in BASIC INSPECTION PROCEDURE. If DTC(s) occur(s), go to Step 11.

11 Perform troubleshooting procedure for DTC

12 Adjust or repair the vehicle

13 Confirmation test

14 END

LW8F1001

FL -10 FUEL SYSTEM

CUSTOMER PROBLEM ANALYSIS SHEET

1. VEHICLEINFORMAITON

VIN No.			Transmission	□ M/T □ A/T □CVT □ etc.
Production of	date			□ 2WD (FF) □ 2WD (FR) □ 4WD
Odometer Reading		km/mile		
2. SYMPT	OMS			
☐ Unable to	o start	☐ Engine does not to☐ Initial combustion		plete combustion
☐ Difficult t	o start	☐ Engine turns over	slowly ☐ Other_	
☐ Poor idlin	ng	☐ Rough idling ☐ Ir☐ Unstable idling (Hi☐ Other		Low:rpm)
☐ Engine s	stall	 □ Soon after starting □ After accelerator pedal depressed □ After accelerator pedal released □ During A/C ON □ Shifting from N to D-range □ Other □ 		
☐ Others	A ==	☐ Poor driving (Surge) ☐ Knocking ☐ Poor fuel economy ☐ Back fire ☐ After fire ☐ Other		
3. ENVIRO	ONMENT			
Problem fre	roblem frequency			
Weather		□ Fine □ Cloudy □ Rainy □ Snowy □ Other		
Outdoor ten	nperature	Approx °C/°F		
Place		☐ Highway ☐ Suburbs ☐ Inner City ☐ Uphill ☐ Downhill ☐ Rough road ☐ Other ☐		
Engine tem	perature	☐ Cold ☐ Warming up ☐ After warming up ☐ Any temperature		
Engine ope	ration	□ Starting □ Just after starting (min) □ Idling □ Racing □ Driving □ Constant speed □ Acceleration □ Deceleration □ A/C switch ON/OFF □ Other		
4. MIL/DTC				
MIL (Malfun Lamp)	ction Indicator	cator ☐ Remains ON ☐ Sometimes lights up ☐ Does not light		
DTC	Normal check (Pre-check)	□ Normal □ DTC () □ Freeze Frame Data		
DIC	Check mode	ode Normal DTC () Freeze Frame Data		
5. ECM/PC	CM INFORMATI	ON		
	ECM/PCM Part No.			
ROM ID	ROM ID			

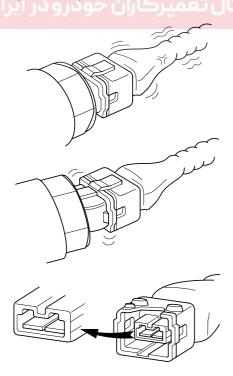
SCMFL6150L

GENERAL FL -11

BASIC INSPECTION PROCEDURE

MEASURING CONDITION OF ELECTRONIC PARTS' RESISTANCE

The measured resistance at high temperature after vehicle running may be high or low. So all resistance must be measured at ambient temperature (20 , 68), unless there is any notice.



The measured resistance in except for ambient temperature (20 , 68) is reference value.

INTERMITTENT PROBLEM INSPECTION PROCEDURE

Sometimes the most difficult case in troubleshooting is when a problem symptom occurs but does not occur again during testing. An example would be if a problem appears only when the vehicle is cold but has not appeared when warm. In this case, the technician should thoroughly make out a "CUSTOMER PROBLEM ANALYSIS SHEET" and recreate (simulate) the environment and condition which occurred when the vehicle was having the issue.

- 1. Clear Diagnostic Trouble Code (DTC).
- Inspect connector connection, and check terminal for poor connections, loose wires, bent, broken or corroded pins, and then verify that the connectors are always securely fastened.

3. Slightly shake the connector and wiring harness vertically and horizontally.

- 4. Repair or replace the component that has a problem.
- Verify that the problem has disappeared with the road test.

SIMULATING VIBRATION

- Sensors and Actuators
 - : Slightly vibrate sensors, actuators or relays with finger.

WARNING

Strong vibration may break sensors, actuators or relays

- b. Connectors and Harness
 - : Lightly shake the connector and wiring harness vertically and then horizontally.

SIMULATING HEAT

 Heat components suspected of causing the malfunction with a hair dryer or other heat source.

WARNING

- DO NOT heat components to the point where they may be damaged.
- DO NOT heat the ECM directly.

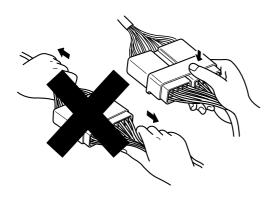
SIMULATING WATER SPRINKLING

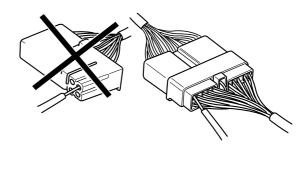
 Sprinkle water onto vehicle to simulate a rainy day or a high humidity condition.

WARNING

DO NOT sprinkle water directly into the engine compartment or electronic components.

SIMULATING ELECTRICAL LOAD

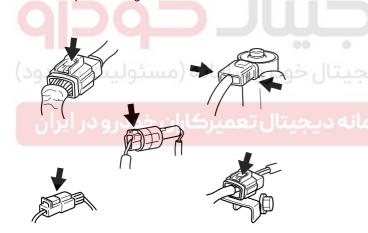

 Turn on all electrical systems to simulate excessive electrical loads (Radios, fans, lights, rear window defogger, etc.).

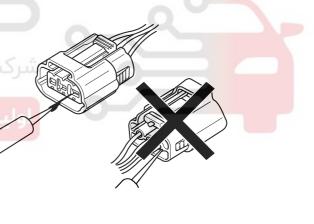

BFGE321A

FL -12 FUEL SYSTEM

CONNECTOR INSPECTION PROCEDURE

- 1. Handling of Connector
 - a. Never pull on the wiring harness when disconnecting connectors.
- d. When a tester is used to check for continuity, or to measure voltage, always insert tester probe from wire harness side.

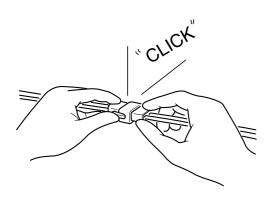




BFGE015I

BFGE015F

 When removing the connector with a lock, press or pull locking lever. e. Check waterproof connector terminals from the connector side. Waterproof connectors cannot be accessed from harness side.


BFGE015J

BFGE015G

c. Listen for a click when locking connectors. This sound indicates that they are securely locked.

- Use a fine wire to prevent damage to the terminal.
- Do not damage the terminal when inserting the tester lead.

BFGE015H

FL -13 **GENERAL**

- Checking Point for Connector
 - While the connector is connected: Hold the connector, check connecting condition and locking efficiency.
 - When the connector is disconnected: Check missed terminal, crimped terminal or broken core wire by slightly pulling the wire harness. Visually check for rust, contamination, deformation and bend.
 - Check terminal tightening condition: Insert a spare male terminal into a female terminal, and then check terminal tightening conditions.
 - Pull lightly on individual wires to ensure that each wire is secured in the terminal.

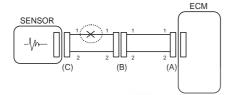
WIRE HARNESS INSPECTION PROCEDURE

- Before removing the wire harness, check the wire harness position and crimping in order to restore it correctly.
- Check whether the wire harness is twisted, pulled or
- Check whether the temperature of the wire harness is abnormally high.
- Check whether the wire harness is rotating, moving or vibrating against the sharp edge of a part.
- Check the connection between the wire harness and any installed part.
- If the covering of wire harness is damaged; secure, repair or replace the harness.

- Repair Method of Connector Terminal
 - Clean the contact points using air gun and/or shop raq.

Never use sand paper when polishing the contact points, otherwise the contact point may be damaged.

In case of abnormal contact pressure, replace the female terminal.


FL -14 FUEL SYSTEM

ELECTRICAL CIRCUIT INSPECTION PROCEDURE CHECK OPEN CIRCUIT

- 1. Procedures for Open Circuit
 - · Continuity Check
 - Voltage Check

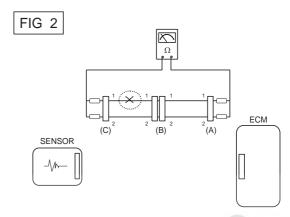

If an open circuit occurs (as seen in [FIG. 1]), it can be found by performing Step 2 (Continuity Check Method) or Step 3 (Voltage Check Method) as shown below.

FIG 1

 Disconnect connectors (A), (C) and measure resistance between connector (A) and (C) as shown in [FIG. 2].

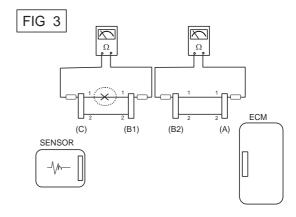
In [FIG.2.] the measured resistance of line 1 and 2 is higher than $1M\Omega$ and below 1 respectively. Specifically the open circuit is line 1 (Line 2 is normal). To find exact break point, check sub line of line 1 as described in next step.

BFGE501B

BFGE501A

2. Continuity Check Method

When measuring for resistance, lightly shake the wire harness above and below or from side to side.

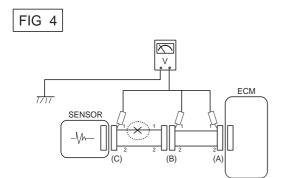

Specification (Resistance)

1 or less Normal Circuit

1MΩ or Higher Open Circuit

b. Disconnect connector (B), and measure for resistance between connector (C) and (B1) and between (B2) and (A) as shown in [FIG. 3].

In this case the measured resistance between connector (C) and (B1) is higher than 1MΩ and the open circuit is between terminal 1 of connector (C) and terminal 1 of connector (B1).



BFGE501C

GENERAL FL -15

- Voltage Check Method
 - With each connector still connected, measure the voltage between the chassis ground and terminal 1 of each connectors (A), (B) and (C) as shown in [FIG. 4].

The measured voltage of each connector is 5V, 5V and 0V respectively. So the open circuit is between connector (C) and (B).

Continuity Check Method (with Chassis Ground)

Lightly shake the wire harness above and below, or from side to side when measuring the resistance.

Specification (Resistance)

- Short to Ground Circuit or less
- 1M or Higher Normal Circuit
 - Disconnect connectors (A), (C) and measure for resistance between connector (A) and Chassis Ground as shown in [FIG. 6].

The measured resistance of line 1 and 2 in this and higher than 1M example is below 1 spectively. Specifically the short to ground circuit is line 1 (Line 2 is normal). To find exact broken point, check the sub line of line 1 as described in the following step.

4. Test Method for Short to Ground Circuit

· Continuity Check with Chassis Ground

If short to ground circuit occurs as shown in [FIG. 5], the broken point can be found by performing below Step 2 (Continuity Check Method with Chassis Ground) as shown below.

FIG 6

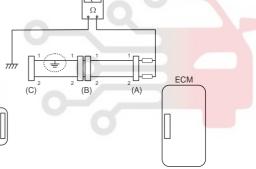
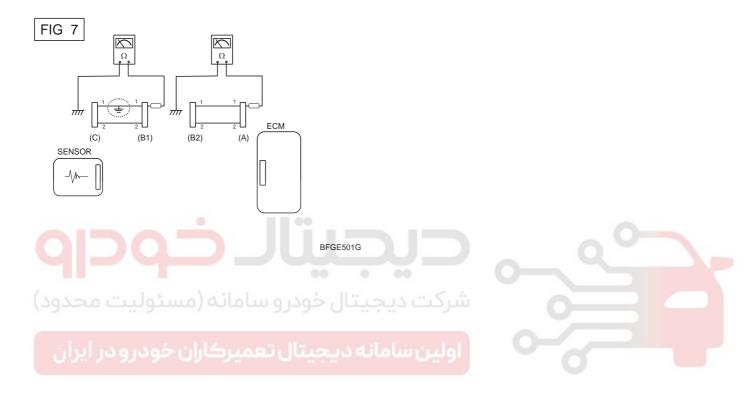


FIG 5

BFGE501F


BFGE501E

BEGE501D

FL -16 FUEL SYSTEM

b. Disconnect connector (B), and measure the resistance between connector (A) and chassis ground, and between (B1) and chassis ground as shown in [FIG. 7].

The measured resistance between connector (B1) and chassis ground is 1 or less. The short to ground circuit is between terminal 1 of connector (C) and terminal 1 of connector (B1).

GENERAL FL -17

SYMPTOM TROUBLESHOOTING GUIDE CHART

MAIN SYMPTOM	DIAGNOSTIC PROCEDURE	ALSO CHECK FOR
Unable to start (Engine does not turn over)	 Test the battery Test the starter Inhibitor switch (A/T) or clutch start switch (M/T) 	
Unable to start (Incomplete combustion)	 Test the battery Check the fuel pressure Check the ignition circuit Troubleshooting the immobilizer system (In case of immobilizer lamp ON) 	 DTC Low compression Intake air leaks Slipped or broken timing belt Contaminated fuel
Difficult to start	 Test the battery Check the fuel pressure Check the ECT sensor and circuit (Check DTC) Check the ignition circuit 	 DTC Low compression Intake air leaks Contaminated fuel Weak ignition spark
Poor idling (Rough, unstable or incorrect Idle)	 Check the fuel pressure Check the Injector Check the long term fuel trim and short term fuel trim (Refer to CUSTOMER DATASTREAM) Check the idle speed control circuit (Check DTC) Inspect and test the Throttle Body Check the ECT sensor and circuit (Check DTC) 	DTC Low compression Intake air leaks Contaminated fuel Weak ignition spark
Engine stall	 Test the Battery Check the fuel pressure Check the idle speed control circuit (Check DTC) Check the ignition circuit Check the CKPS Circuit (Check DTC) 	DTC Intake air leaks Contaminated fuel Weak ignition spark
Poor driving (Surge)	 Check the fuel pressure Inspect and test Throttle Body Check the ignition circuit Check the ECT Sensor and Circuit (Check DTC) Test the exhaust system for a possible restriction Check the long term fuel trim and short term fuel trim (Refer to CUSTOMER DATASTREAM) 	 DTC Low compression Intake air leaks Contaminated fuel Weak ignition spark
Knocking	 Check the fuel pressure Inspect the engine coolant Inspect the radiator and the electric cooling fan Check the spark plugs 	DTC Contaminated fuel

FL -18 FUEL SYSTEM

MAIN SYMPTOM	DIAGNOSTIC PROCEDURE	ALSO CHECK FOR
Poor fuel economy	 Check customer's driving habits Is A/C on full time or the defroster mode on? Are tires at correct pressure? Is excessively heavy load being carried? Is acceleration too much, too often? Check the fuel pressure Check the injector Test the exhaust system for a possible restriction Check the ECT sensor and circuit 	DTC Low compression Intake air leaks Contaminated fuel Weak ignition spark
Hard to refuel (Overflow during refueling)	 Test the canister close valve Inspect the fuel filler hose/pipe Pinched, kinked or blocked? Filler hose is torn Inspect the fuel tank vapor vent hose between the EVAP. canister and air filter Check the EVAP. canister 	Malfunctioning gas station filling nozzle (If this problem occurs at a specific gas station during refueling)

شرکت دیجیتال خودرو سامانه (مسئولیت محدود)

اولین سامانه دیجیتال تعمیرکاران خودرو در ایران

GASOLINE ENGINE CONTROL SYSTEM

FL -19

GASOLINE ENGINE CONTROL SYSTEM

DESCRIPTION E474CA7E

If the Gasoline Engine Control system components (sensors, ECM, injector, etc.) fail, interruption to the fuel supply or failure to supply the proper amount of fuel for various engine operating conditions will result. The following situations may be encountered.

- 1. Engine is hard to start or does not start at all.
- Unstable idle.
- Poor driveability

If any of the above conditions are noted, first perform a routine diagnosis that includes basic engine checks (ignition system malfunction, incorrect engine adjustment, etc.). Then, inspect the Gasoline Engine Control system components with the HI-SCAN (Pro).

NOTE

- Before removing or installing any part, read the diagnostic trouble codes and then disconnect the battery negative (-) terminal.
- Before disconnecting the cable from battery terminal, turn the ignition switch to OFF. Removal or connection of the battery cable during engine operation or while the ignition switch is ON could cause damage to the ECM.
- The control harnesses between the ECM and heated oxygen sensor are shielded with the shielded ground wires to the body in order to prevent the influence of ignition noises and radio interference. When the shielded wire is faulty, the control harness must be replaced.
- When checking the generator for the charging state, do not disconnect the battery '+' terminal to prevent the ECM from damage due to the voltage.
- When charging the battery with the external charger, disconnect the vehicle side battery terminals to prevent damage to the ECM.

MALFUNCTION INDICATOR LAMP (MIL)

[EOBD]

A malfunction indicator lamp illuminates to notify the driver that there is a problem with the vehicle. However, the MIL will go off automatically after 3 subsequent sequential driving cycles without the same malfunction. Immediately after the ignition switch is turned on (ON position - do not start), the MIL will illuminate continuously to indicate that the MIL operates normally.

Faults with the following items will illuminate the MIL.

- Catalyst
- Fuel system
- Mass Air Flow Sensor (MAFS)
- Intake Air Temperature Sensor (IATS)
- Engine Coolant Temperature Sensor (ECTS)
- Throttle Position Sensor (TPS)
- Upstream Oxygen Sensor
- Upstream Oxygen Sensor Heater
- Downstream Oxygen Sensor
- Downstream Oxygen Sensor Heater
- Injector
- Misfire
- Crankshaft Position Sensor (CKPS)
- Camshaft Position Sensor (CMPS)
- Evaporative Emission Control System
- Vehicle Speed Sensor (VSS)
- Idle Speed Control Actuator (ISCA)
- Power Supply
- ECM
- MT/AT Encoding
- Acceleration Sensor
- MIL-on Request Signal
- Power Stage

NOTE

Refer to "INSPECTION CHART FOR DIAGNOSTIC TROUBLE CODES (DTC)" for more information.

FL -20 FUEL SYSTEM

[NON-EOBD]

A malfunction indicator lamp illuminates to notify the driver that there is a problem with the vehicle. However, the MIL will go off automatically after 3 subsequent sequential driving cycles without the same malfunction. Immediately after the ignition switch is turned on (ON position - do not start), the MIL will illuminate continuously to indicate that the MIL operates normally.

Faults with the following items will illuminate the MIL

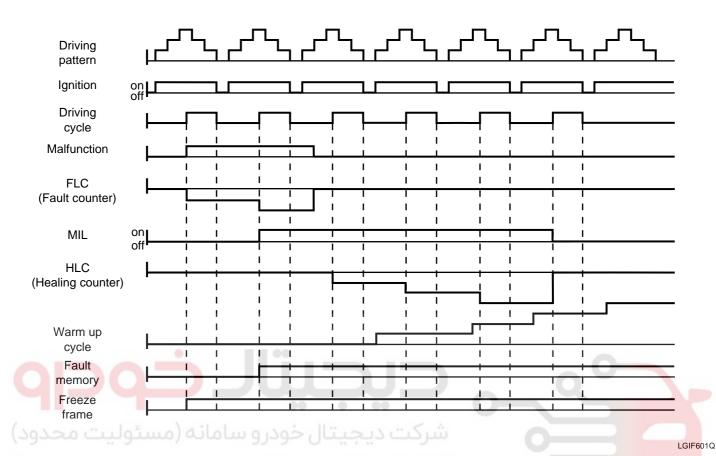
- Heated oxygen sensor (HO2S)
- Mass Air Flow sensor (MAFS)
- Throttle position sensor (TPS)
- Engine coolant temperature sensor (ECTS)
- Idle speed control actuator (ISCA)
- Injectors
- ECM

Refer to "INSPECTION CHART FOR DIAGNOSTIC TROUBLE CODES (DTC)" for more information.

[INSPECTION]

- 1. After turning ON the ignition key, ensure that the light illuminates for about 5 seconds and then goes out.
- 2. If the light does not illuminate, check for an open circuit in the harness, a blown fuse or a blown bulb.

SELF-DIAGNOSIS


The ECM monitors the input/output signals (some signals at all times and the others under specified conditions). When the ECM detects an irregularity, it records the diagnostic trouble code, and outputs the signal to the Data Link connector. The diagnosis results can be read with the MIL or HI-SCAN (Pro). Diagnostic Trouble Codes (DTC) will remain in the ECM as long as battery power is maintained. The diagnostic trouble codes will, however, be erased when the battery terminal or ECM connector is disconnected, or by the HI-SCAN (Pro).

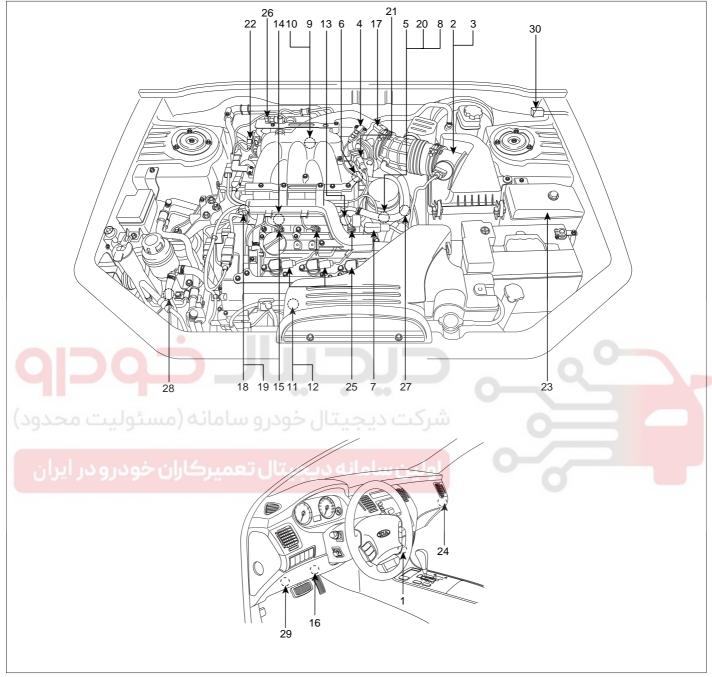
If a sensor connector is disconnected with the ignition switch turned on, the diagnostic trouble code (DTC) is recorded. In this case, disconnect the battery negative terminal (-) for 15 seconds or more, and the diagnosis memory will be erased.

THE RELATION BETWEEN DTC AND DRIVING PATTERN IN EOBD SYSTEM

- When the same malfunction is detected and maintained during two sequential driving cycles, the MIL will automatically illuminate.
- 2. The MIL will go off automatically if no fault is detected after 3 sequential driving cycles.
- A Diagnostic Trouble Code(DTC) is recorded in ECM memory when a malfunction is detected after two sequential driving cycles. The MIL will illuminate when the malfunction is detected on the second driving cycle.

If a misfire is detected, a DTC will be recorded, and the MIL will illuminate, immediately after a fault is first detected.

 A Diagnostic Trouble Code(DTC) will automatically erase from ECM memory if the same malfunction is not detected for 40 driving cycles.

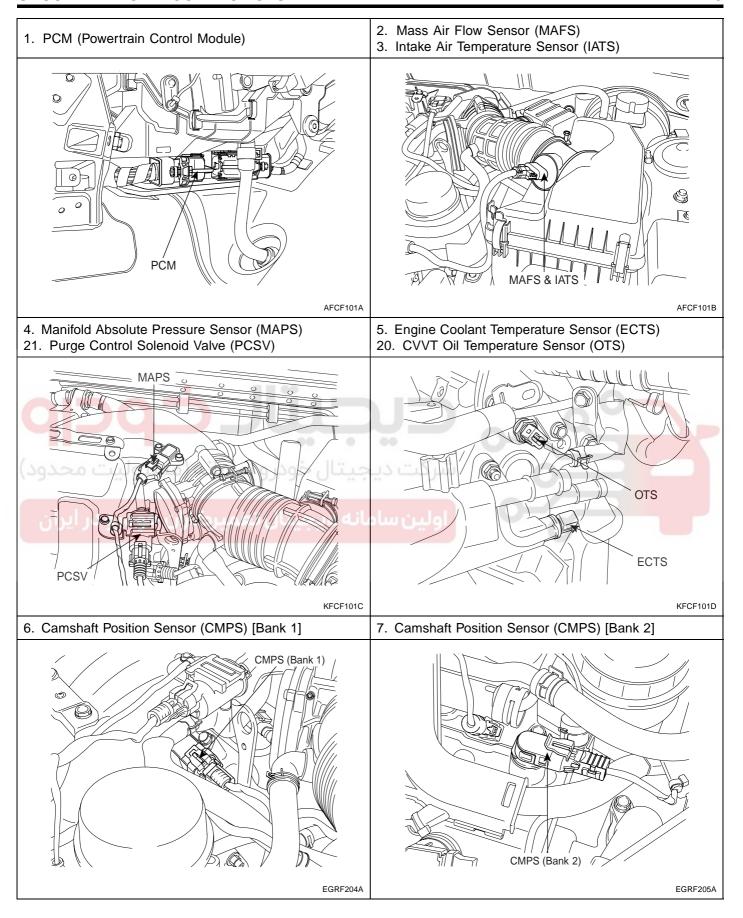

NOTE

A "warm-up cycle" means sufficient vehicle operation such that the coolant temperature has risen by at least 40 degrees Fahrenheit from engine starting and reaches a minimum temperature of 160 degress Fahrenheit.

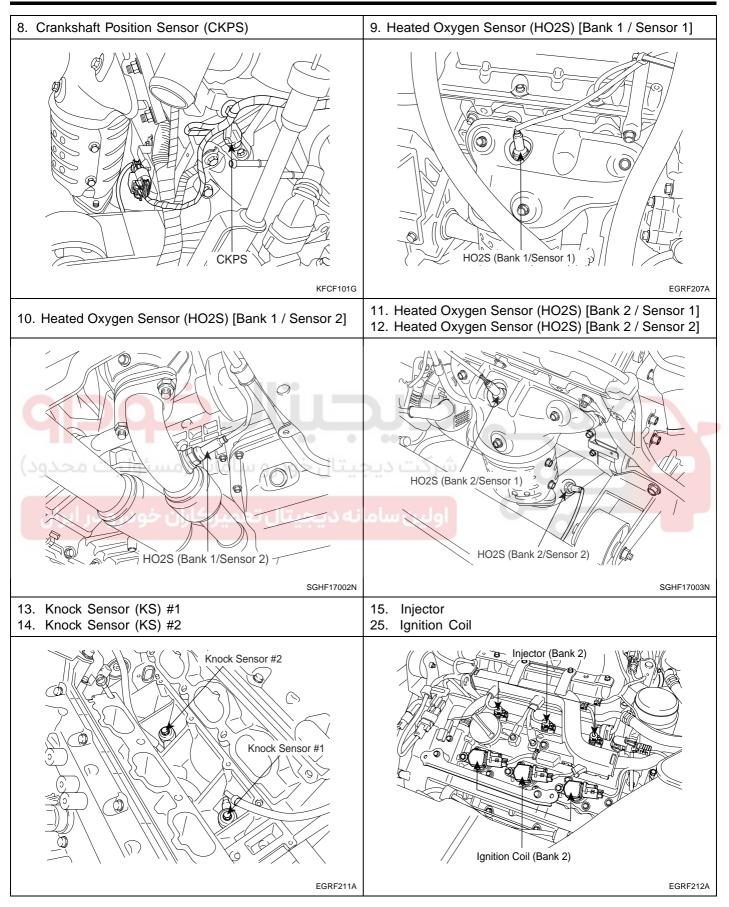
A "driving cycle" consists of engine startup, vehicle operation beyond the beginning of closed loop operation.

FL -22 FUEL SYSTEM

COMPONENTS ED36627

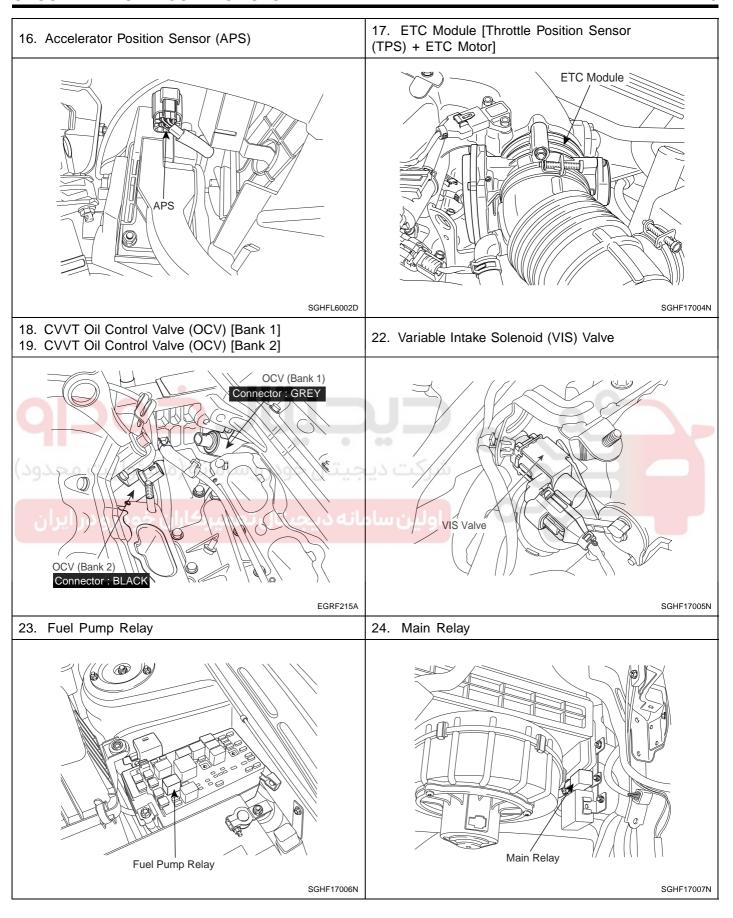

- 1. PCM (Powertrain Control Module)
- 2. Mass Air Flow Sensor (MAFS)
- 3. Intake Air Temperature Sensor (IATS)
- 4. Manifold Absolute Pressure Sensor (MAPS)
- 5. Engine Coolant Temperature Sensor (ECTS)
- 6. Camshaft Position Sensor (CMPS) [Bank 1]
- 7. Camshaft Position Sensor (CMPS) [Bank 2]
- 8. Crankshaft Position Sensor (CKPS)
- 9. Heated Oxygen Sensor (HO2S) [Bank 1 / Sensor 1]
- 10. Heated Oxygen Sensor (HO2S) [Bank 1 / Sensor 2]
- 11. Heated Oxygen Sensor (HO2S) [Bank 2 / Sensor 1]
- 12. Heated Oxygen Sensor (HO2S) [Bank 2 / Sensor 2]
- 13. Knock Sensor (KS) #1
- 14. Knock Sensor (KS) #2
- 15. Injector

- 16. Accelerator Position Sensor (APS)
- 17. ETC Module [Throttle Position Sensor (TPS) + ETC Motor]
- 18. CVVT Oil Control Valve (OCV) [Bank 1]
- 19. CVVT Oil Control Valve (OCV) [Bank 2]
- 20. CVVT Oil Temperature Sensor (OTS)
- 21. Purge Control Solenoid Valve (PCSV)
- 22. Variable Intake Solenoid (VIS) Valve
- 23. Fuel Pump Relay
- 24. Main Relay
- 25. Ignition Coil
- 26. Power Steering Pressure Sensor (PSPS)
- 27. Vehicle Speed Sensor (VSS)
- 28. A/C Pressure Transducer
- 29. Data Link Connector (DLC)
- 30. Multi Purpose Check Connector

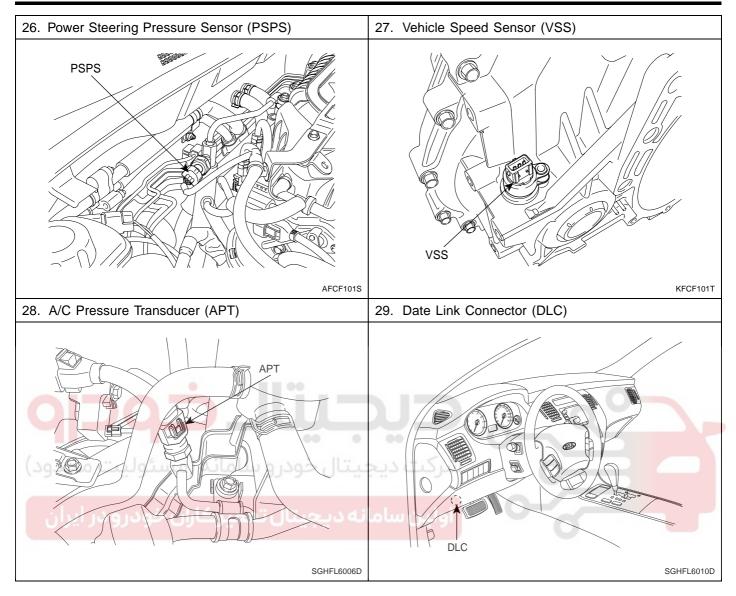

SGHFL7100L

GASOLINE ENGINE CONTROL SYSTEM

FL -23



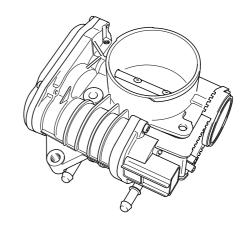
FL -24 FUEL SYSTEM



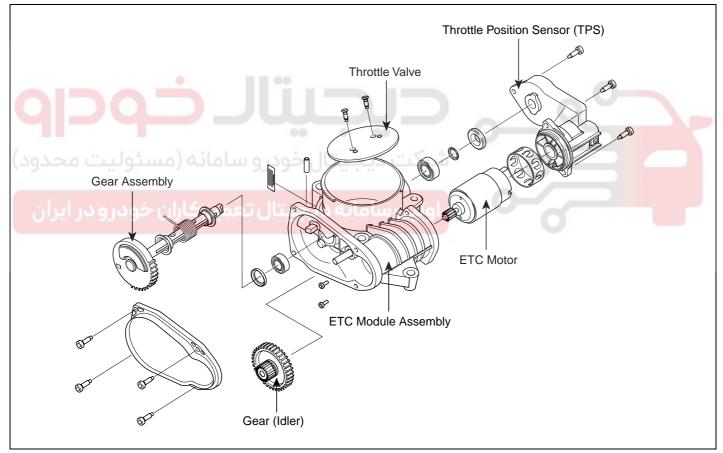
GASOLINE ENGINE CONTROL SYSTEM

FL -25

FL -26 FUEL SYSTEM

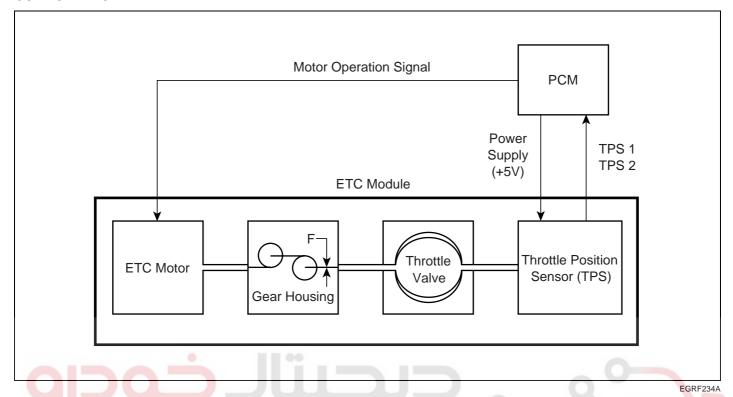


ETC (ELECTRONIC THROTTLE CONTROL) SYSTEM


DESCRIPTION

EF48F0B6

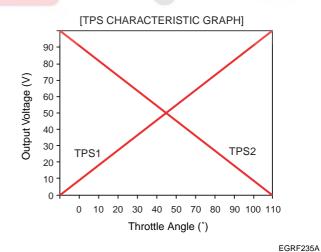
ETC (Electronic Throttle Control) system is electronically controlled throttle device which controls the throttle valve. It consists of ETC motor, throttle body and throttle position sensor (TPS). A mechanical throttle control system receives a driver's intention via a wire cable between the accelerator and the throttle valve, while this ETC system does the signal from the Accelerator Position Sensor (APS) installed on the accelerator pedal. After the PCM receives the APS signal and calculates the throttle opening angle, it activates the throttle valve by using the ETC motor. Additionally, it can materialize cruise control function without any special devices.


KFCF1020

EGRF233A

FL -28 FUEL SYSTEM

COMPONENTS

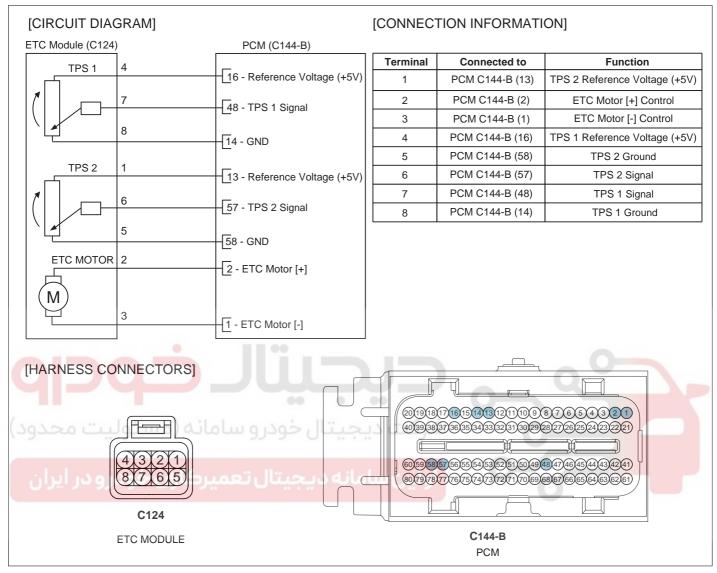


SPECIFICATION

[THROTTLE POSITION SENSOR]

Throttle	Output Voltage	(V) [Vref = 5.0V]
Angle(°)	TPS1	TPS2
0°	0V	5.0V
10°	0.5V	4.5V
20°	0.9V	4.1V
30°	1.4V	3.6V
40°	1.8V	3.2V
50°	2.3V	2.7V
60°	2.7V	2.3V
70°	3.2V	1.8V
80°	3.6V	1.4V
90°	4.1V	0.9V
100°	4.5V	0.5V
110°	5.0V	0V

Item	Sensor Resistance
TPS1	$4.0 \sim 6.0$ kΩ at 20 (68)
TPS2 ولين سا	2.72 ~ 4.08kΩ at 20 (68)


[ETC MOTOR]

Item	Sensor Resistance
Coil Resistance ()	1.275 ~ 1.725 at 20 (68)

GASOLINE ENGINE CONTROL SYSTEM

FL -29

SCHEMATIC DIAGRAM

UFBG236A

FL -30 FUEL SYSTEM

FAIL-SAFE MODE

Mode	Description	Symptom	Possible Cause
MODE 1	FORCED ENGINE SHUTDOWN	Engine stop	 ETC system can't proceed reliable algorithm procedure Fatal PCM internal programming error Faulty intake system or throttle body
MODE 2	FORCED IDLE & POWER MANAGEMENT	Forced idle state controlled by fuel quantity regulation and ignition timing adjustment	 ETC system can't control engine power via throttle device Disabled throttle control or broken throttle position information
MODE 3	FORCED IDLE	Forced idle state and no response for accelerator activation	 No information about the accelerator position Broken APS 1 and 2, faulty A/D converter or internal controller
MODE 4	LIMIT PERFOR- MANCE & POWER MANAGEMENT	Engine power is determined by accelerator position and idle power requirement (Limited vehicle running)	ETC system can't securely control engine power
MODE 5	LIMIT PERFOR- MANCE	Engine power varies with accelerator position, but driver perceives lack of engine power. MIL ON (Normal vehicle running)	 Not reliable accelerator position signal or bad maximum power generation Faulty APS, ignition voltage or internal controller
MODE 6	NORMAL	Normal	

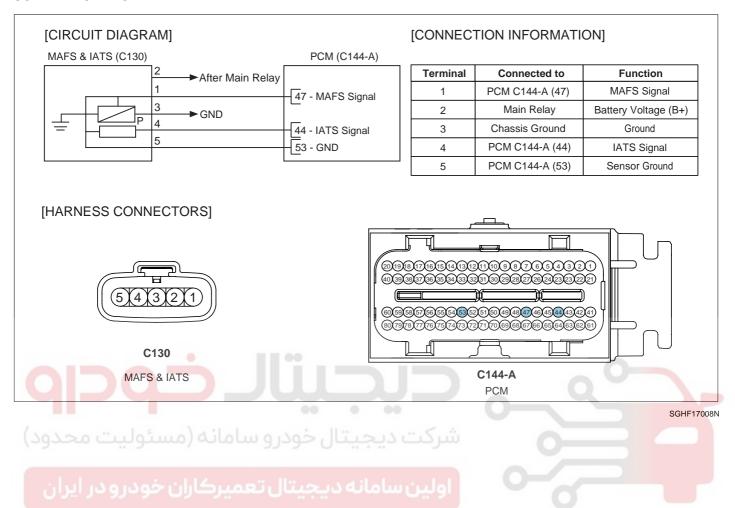
GASOLINE ENGINE CONTROL SYSTEM

FL -31

MASS AIR FLOW SENSOR (MAFS)

DESCRIPTION EBBCA1C4

Mass Air Flow Sensor (MAFS) is a hot-film type sensor and is located in between the air cleaner and the throttle body. It consists of a tube, a sensor assembly and honey cell and detects intake air quantity flowing into the intake manifold. While the intake air coming out of the air cleaner flows by the honey cell, it becomes laminar flow, and then it passes the hot-film. At this time, heat transfer is generated by convection and this sensor loses its energy. This sensor detects the mass air flow by using the energy loss and transfers the information to the PCM by frequency. The PCM calculates fuel quantity and ignition timing.

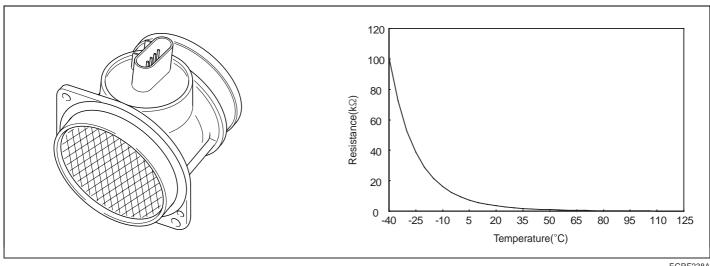


SPECIFICATION

Air Flow (kg/h)	Output Frequency (Hz)
12.6 kg/h	2,617Hz
18.0 kg/h	2,958Hz
23.4 kg/h	3,241Hz
32.4 kg/h	3,653Hz
43.2 kg/h	4,024Hz
57.6 kg/h	4,399Hz
72.0 kg/h	4,704Hz
108.0 kg/h	5,329Hz
144.0 kg/h	5,897Hz
198.0 kg/h	6,553Hz
270.0 kg/h	7,240Hz
360.0 kg/h	7,957Hz
486.0 kg/h	8,738Hz
666.0 kg/h	9,644Hz
900.0 kg/h	10,590Hz

FL -32 FUEL SYSTEM

SCHEMATIC DIAGRAM


GASOLINE ENGINE CONTROL SYSTEM

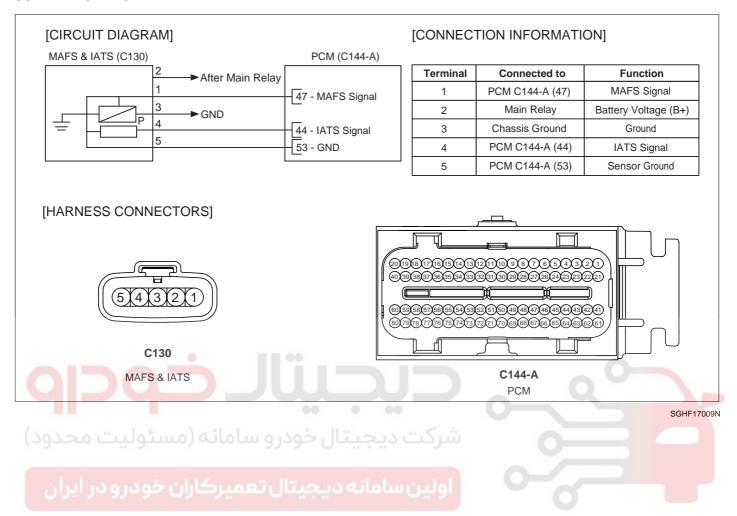
FL -33

INTAKE AIR TEMPERATURE **SENSOR (IATS)**

DESCRIPTION

E4C1EF07

EGRF238A

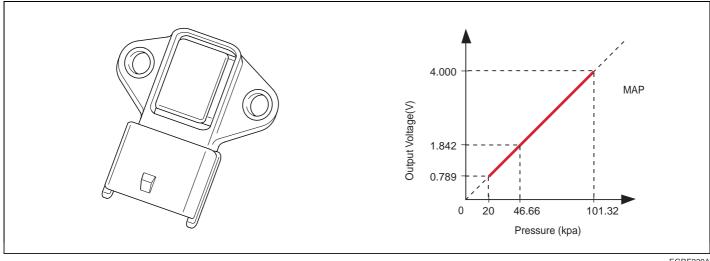

Intake Air Temperature Sensor (IATS) is installed inside the Mass Air Flow Sensor (MAFS) and detects the intake air temperature. To calculate precise air quantity, correction of the air temperature is needed because air density varies according to the temperature. So the PCM uses not only MAFS signal but also IATS signal. This sensor has a Negative Temperature Coefficient (NTC) and its resistance is in inverse proportion to the temperature.

SPECIFICATION

Tempe	erature	
-40	-40	100.87kΩ
-20	-4	28.58kΩ
0	32	9.40kΩ
10	50	5.66kΩ
20	68	3.51 kΩ
40	104	1.47kΩ
60	140	0.67kΩ
80	176	0.33kΩ

FL -34 FUEL SYSTEM

SCHEMATIC DIAGRAM


GASOLINE ENGINE CONTROL SYSTEM

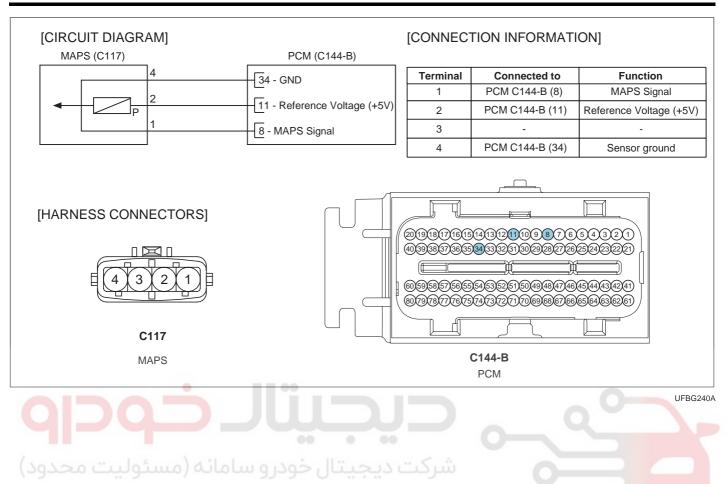
FL -35

MANIFOLD ABSOLUTE PRESSURE SENSOR (MAPS)

DESCRIPTION

EAFFB5B1

EGRF239A

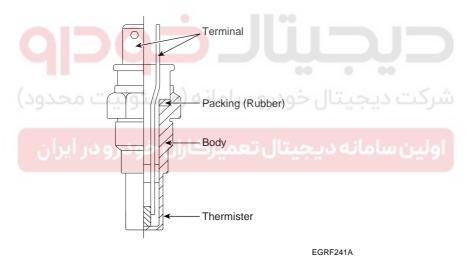

Manifold Absolute Pressure Sensor (MAPS) is speed-density type sensor and is installed on the surge tank. This MAPS senses absolute pressure in surge tank and transfers this analog signal proportional to the pressure to the PCM. The PCM calculates the intake air quantity and engine speed based on this signal. This MAPS consists of piezo-electric element and hybrid IC that amplifies the element output signal. The element is silicon diaphragm type and adapts pressure sensitive variable resistor effect of semi-conductor. 100% vacuum and the manifold pressure applies to both sides of it respectively. That is, this sensor outputs the silicon variation proportional to pressure change by voltage.

SPECIFICATION

Pressure(kPa)	Output Voltage (V)
20.0kPa	0.79V
46.66kPa	1.84V
101.32kPa	4.00V

FL -36 FUEL SYSTEM

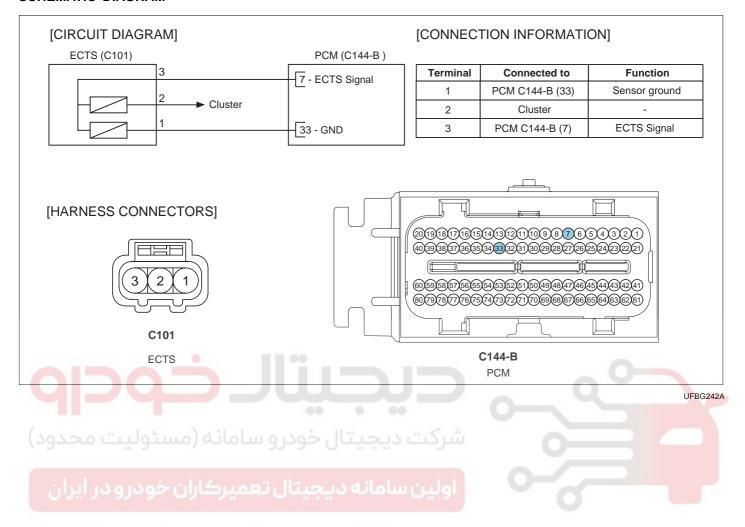
FL -37


ENGINE COOLANT TEMPERATURE SENSOR (ECTS)


DESCRIPTION E9AF4BED

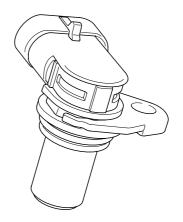
Engine Coolant Temperature Sensor (ECTS) is located in the engine coolant passage of the cylinder head for detecting the engine coolant temperature. The ECTS uses a thermistor whose resistance changes with the temperature. The electrical resistance of the ECTS decreases as the temperature increases, and increases as the temperature decreases. The reference 5 V in the PCM is supplied to the ECTS via a resistor in the PCM. That is, the resistor in the PCM and the thermistor in the ECTS are connected in series. When the resistance value of the thermistor in the ECTS changes according to the engine coolant temperature, the output voltage also changes. During cold engine operation the PCM increases the fuel injection duration and controls the ignition timing using the information of engine coolant temperature to avoid engine stalling and improve drivability.

SPECIFICATION

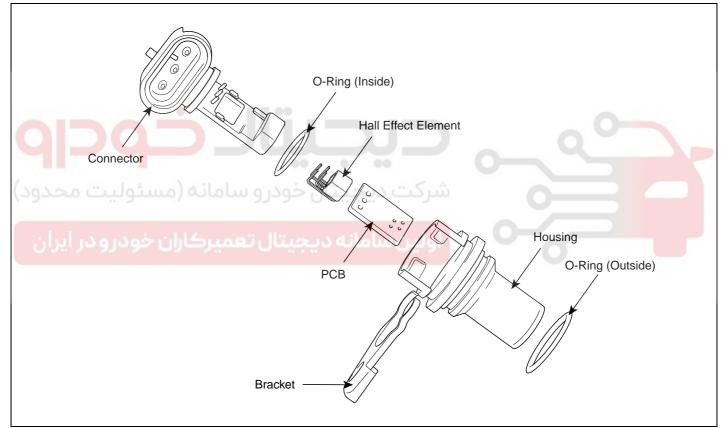

Temperature		
		Resistance(kΩ)
-40	-40	48.14kΩ
-20	-4	14.13 ~ 16.83kΩ
0	32	5.79kΩ
20	68	2.31 ~ 2.59kΩ
40	104	1.15kΩ
60	140	0.59kΩ
80	176	0.32kΩ

FL -38 FUEL SYSTEM

SCHEMATIC DIAGRAM

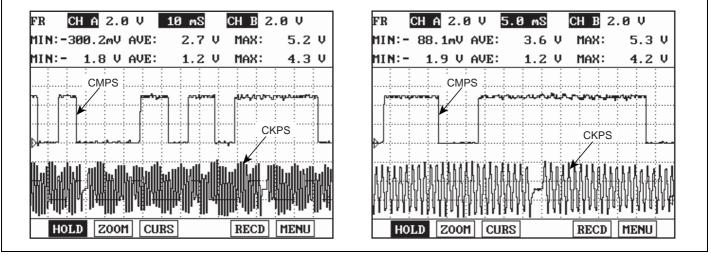


CAMSHAFT POSITION SENSOR (CMPS)

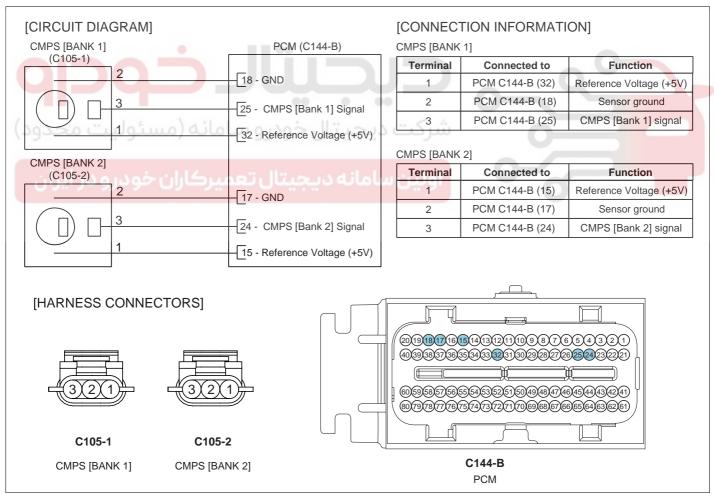

DESCRIPTION

EB2985E8

Camshaft Position Sensor (CMPS) is a hall sensor and detects the camshaft position by using a hall element. It is related with Crankshaft Position Sensor (CKPS) and detects the piston position of each cylinder which the CKPS can't detect. The two CMPS are installed on engine head cover of bank 1 and 2 and uses a target wheel installed on the camshaft. This sensor has a hall-effect IC which output voltage changes when magnetic field is made on the IC with current flow. So the sequential injection of the 6 cylinders is impossible without CMPS signal.


KFCF1022

EGRF243A


FL -40 FUEL SYSTEM

WAVEFORM

KFCF102M

SCHEMATIC DIAGRAM

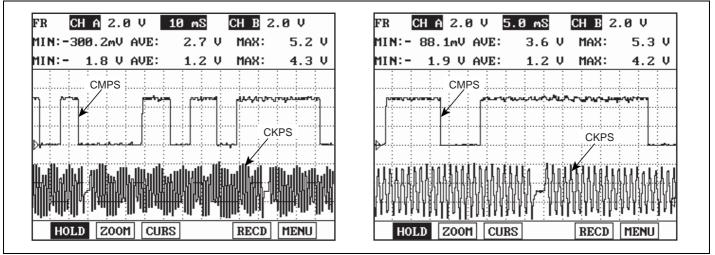
UFBG244A


FL -41

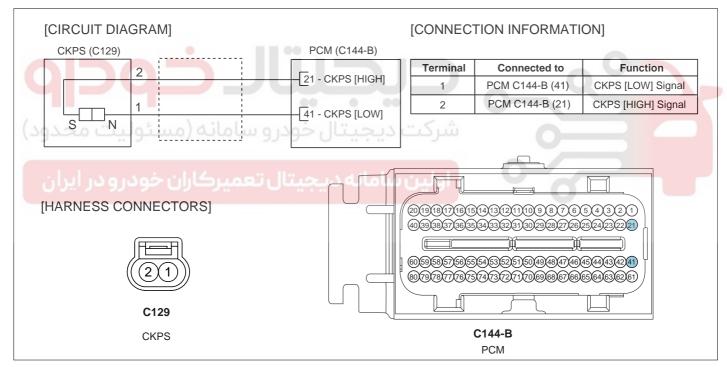
CRANKSHAFT POSITION SENSOR (CKPS)

DESCRIPTION E510444C

Crankshaft Position Sensor (CKPS) detects the crankshaft position and is one of the most important sensors of the engine control system. If there is no CKPS signal input, fuel is not supplied and the main relay does not operate. That is, vehicle can't run without CKPS signal. This sensor is installed on transaxle housing and generates alternating current by magnetic flux field which is made by the sensor and the target wheel when engine runs. The magnetic flux increases when the protrusion of the target wheel is getting near to the sensor and does not change in the most close position. When the protrusion becomes estranged from the sensor, magnetic flux disappears and alternating current is generated. The target wheel consists of 58 slots and 2 missing slots on 360 CA (Crank Angle).



UFBG245A

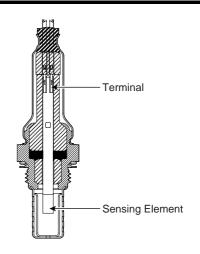

FL -42 FUEL SYSTEM

WAVEFORM

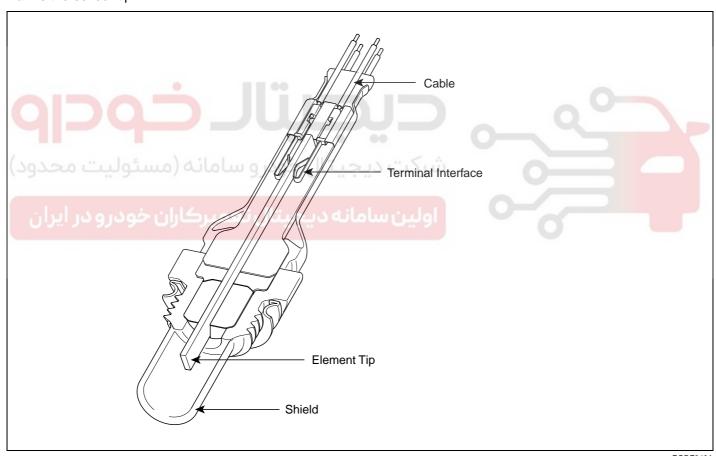
KFCF102M

SCHEMATIC DIAGRAM

SGHF17010N


FL -43

HEATED OXYGEN SENSOR (HO2S)

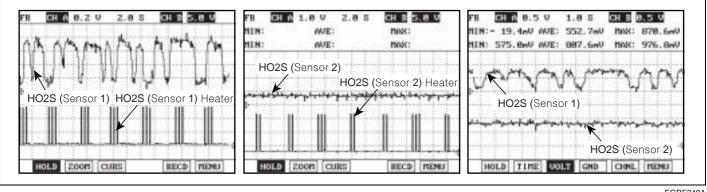

DESCRIPTION E

E19D96F7

Heated Oxygen Sensor (HO2S) consists of zirconium and alumina and is installed on upstream and downstream of the Manifold Catalyst Converter (MCC). After it compares oxygen consistency of the atmosphere with the exhaust gas, it transfers the oxygen consistency of the exhaust gas to the PCM. When A/F ratio is rich or lean, it generates approximately 1V or 0V respectively. In order that this sensor normally operates, the temperature of the sensor tip is higher than 370 (698). So it has a heater which is controlled by the PCM duty signal. When the exhaust gas temperature is lower than the specified value, the heater warms the sensor tip.

EGRF247A

EGRF248A

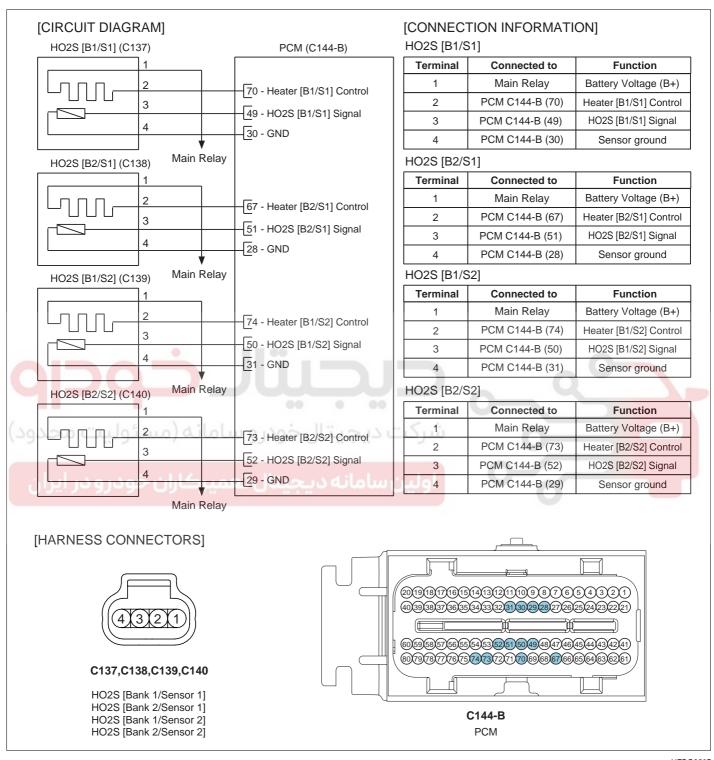

SPECIFICATION

A/F Ratio	Output Voltage (V)
RICH	0.75 ~ 1.00V
LEAN	0 ~ 0.12V

Item	Specification
Heater Resistance ()	8.1 ~ 11.1 at 21 (69.8)

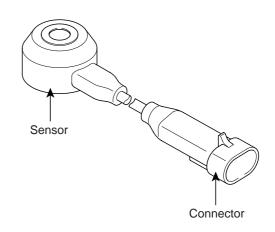
FL -44 **FUEL SYSTEM**

WAVEFORM

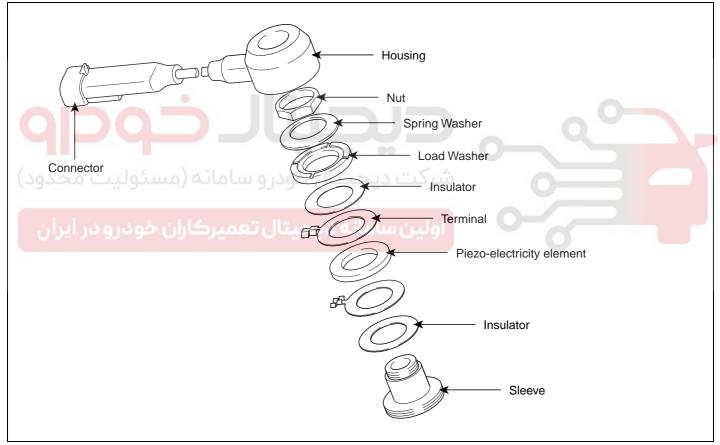

EGRF249A

FL -45

SCHEMATIC DIAGRAM


UFBG250B

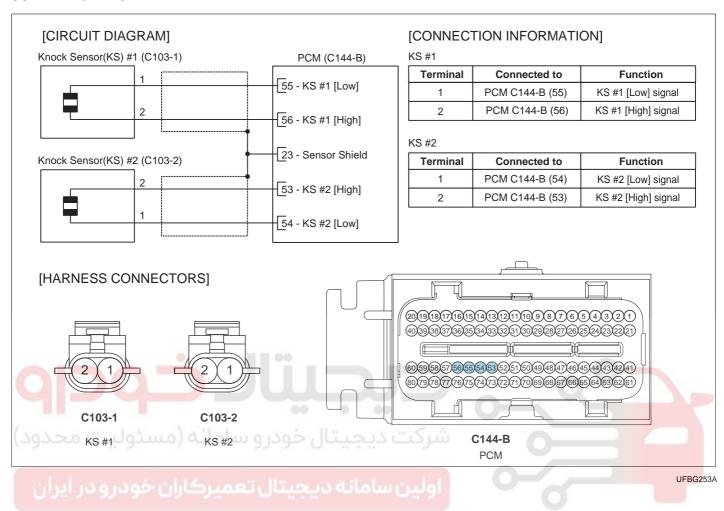
FL -46 FUEL SYSTEM


KNOCK SENSOR (KS)

DESCRIPTION EA0A843A

Knocking is a phenomenon characterized by undesirable vibration and noise and can cause engine damage. Knock Sensor (KS) senses engine knocking and the two sensors are installed inside the V-valley of the cylinder block. When knocking occurs, the vibration from the cylinder block is applied as pressure to the piezoelectric element. At this time, this sensor transfers the voltage signal higher than the specified value to the PCM and the PCM retards the ignition timing. If the knocking disappears after retarding the ignition timing, the PCM will advance the ignition timing. This sequential control can improve engine power, torque and fuel economy.

EGRF251A


EGRF252A

SPECIFICATION

Item	Specification	
Capacitance (pF)	1,480 ~ 2,220pF	

FL -47

SCHEMATIC DIAGRAM

FL -48 **FUEL SYSTEM**

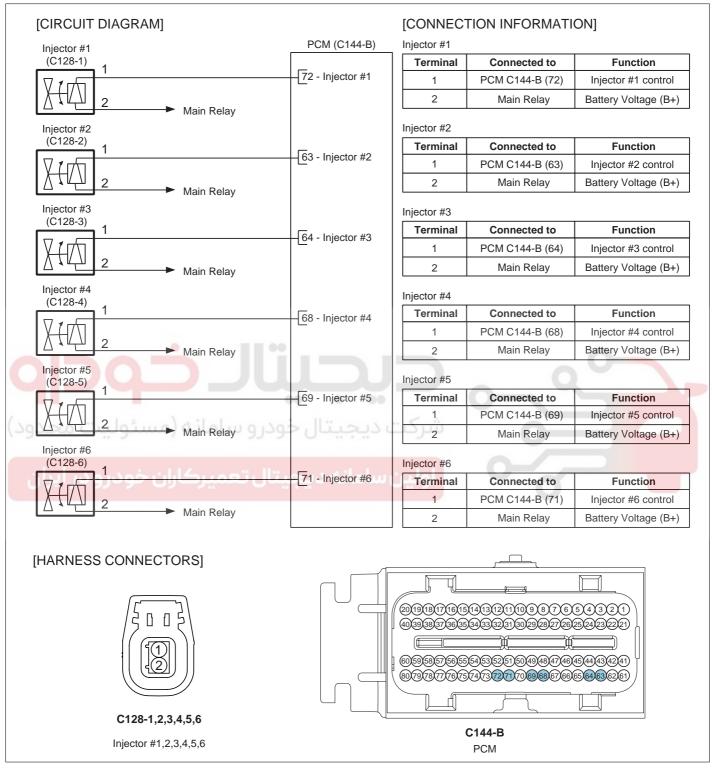
INJECTOR

DESCRIPTION F23C3670

Based on information from various sensors, the PCM measures the fuel injection amount. The fuel injector is a solenoid-operated valve and the fuel injection amount is controlled by length of time that the fuel injector is held open. The PCM controls each injector by grounding the control circuit. When the PCM energizes the injector by grounding the control circuit, the circuit voltage should be low (theoretically 0V) and the fuel is injected. When the PCM de-energizes the injector by opening control circuit, the fuel injector is closed and circuit voltage should be peak for a moment.

∴ CAUTION

If an injector connector is disconnected for more than 46 seconds while the engine runs, the PCM will determine that the cylinder is misfired and cut fuel supply. So be careful not to exceed 46 seconds. But the engine runs normally in 10 seconds after turning the ignition key off.


KFCF1026

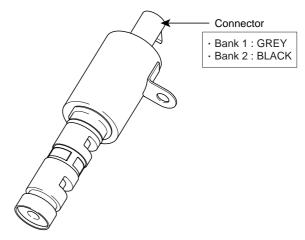
SPECIFICATION

Item	Specification	
Coil Resistance ()	11.4 ~ 12.6 at 20 (68)	

FL -49

SCHEMATIC DIAGRAM

UFBG254A

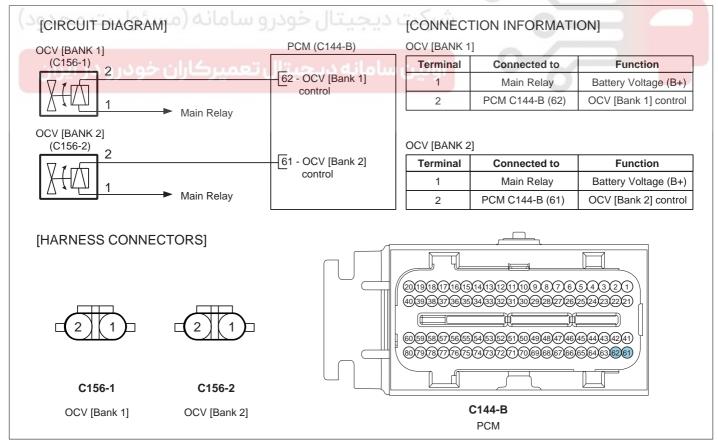

FL -50 FUEL SYSTEM

CVVT OIL CONTROL VALVE (OCV)

DESCRIPTION E0FC7093

Continuously Variable Valve Timing (CVVT) system controls valve overlap with forcibly activating the camshaft and adjusts EGR (Exhaust Gas Recirculation) amount. It decreases exhaust gas (NOx, HC) and improves fuel economy, idle state, torque in low speed and power in high speed. This system uses engine oil pressure and consists of the two CVVT Oil Control Valves (OCV) in each bank which supplies oil to cam phaser according to PWM (Pulse Width Modulator) signal of the PCM, a CVVT Oil Temperature Sensor (OTS) which detects the oil temperature and a cam phaser which is installed on the end of the camshaft and converts camshaft phase. The oil getting out of the CVVT oil control valve flows into the cam phaser and rotates the rotor inside cam phaser. At this time, the camshaft rotates with the rotor and the cam phase is changed.

 When camshaft rotates engine rotation-wise: Intake-Advance / Exhaust-Retard When camshaft rotates counter engine rotation-wise: Intake- Retard / Exhaust- Advance



EFBF1027

SPECIFICATION

Item	Specification		
Coil Resistance ()	6.7 ~ 7.7 at 20 (68)		

SCHEMATIC DIAGRAM

UFBG255A

FL -51

INSTALLATION

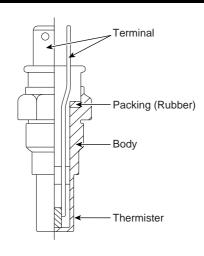
(1) CAUTION

If the OCVs are installed incorrectly, the vehicle may be damaged. So when installing them, be careful its connector color (Components and harness side).

[BANK AND ITS COLOR]

Bank	Component side	Harness side
Bank 1 (RH)	Grey	Grey
Bank 2 (LH)	Black	Black

FL -52 FUEL SYSTEM

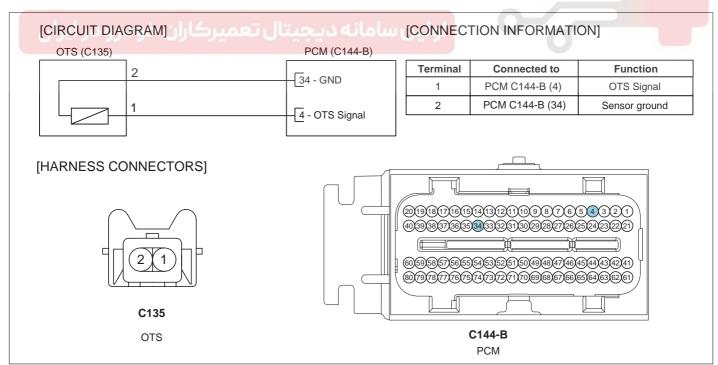

CVVT OIL TEMPERATURE SENSOR(OTS)

DESCRIPTION EF74A5DE

Continuously Variable Valve Timing (CVVT) system controls valve overlap by forcibly activating the camshaft and adjusts EGR (Exhaust Gas Recirculation) amount. It decreases exhaust gas (NOx, HC) and improves fuel economy, idle state, torque in low speed and power in high speed. This system uses engine oil pressure and consists of the two CVVT Oil Control Valves (OCV) in each bank which supplies oil to cam phaser according to PWM (Pulse With Modulator) signal of the PCM, a CVVT Oil Temperature Sensor (OTS) which detects the oil temperature and a cam phaser which is installed on the end of the camshaft and converts camshaft phase. The oil getting out of the CVVT oil control valve flows into the cam phaser and rotates the rotor inside camphaser. At this time, the camshaft rotates with the rotor and the cam phase is changed.

- When camshaft rotates engine rotation-wise: Intake-Advance / Exhaust-Retard
- When camshaft rotates counter engine rotation-wise:
 Intake- Retard / Exhaust- Advance

 COUNTIES BLACE AND

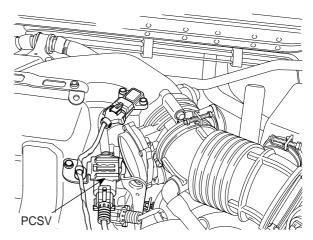


EGRF241A

SPECIFICATION

Temperature			
		Resistance(kΩ)	
-20	-4	16.52kΩ	
20	32	2.45kΩ	
80	176	0.29kΩ	

SCHEMATIC DIAGRAM

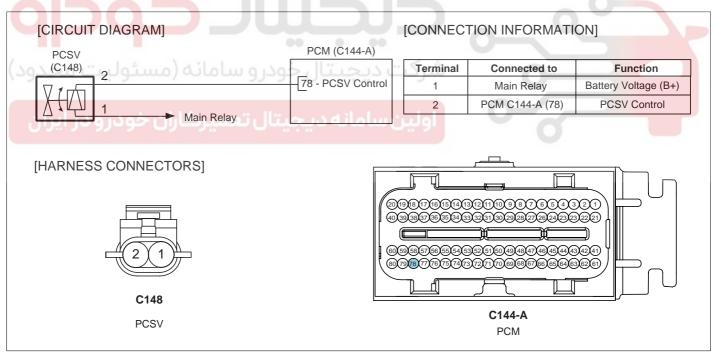

UFBG256A

FL -53

PURGE CONTROL SOLENOID VALVE (PCSV)

DESCRIPTION E1027B3C

Purge Control Solenoid Valve (PCSV) is installed on the surge tank and controls the passage between the canister and the intake manifold. It is a solenoid valve and is open when the PCM grounds the valve control line. When the passage is open (PCSV ON), fuel stored in the canister is transferred to the intake manifold.



KFBF312A

SPECIFICATION

Item	Specification	
Coil Resistance ()	19.0 ~ 22.0 at 20 (68)	

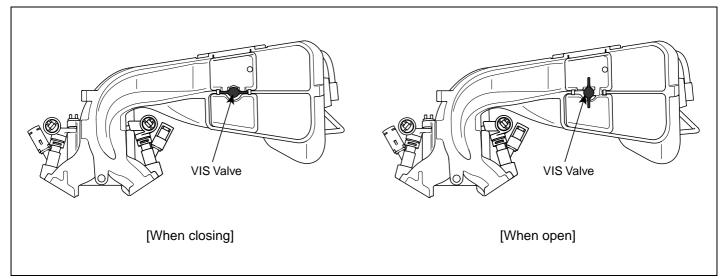
SCHEMATIC DIAGRAM

SGHF17011N

FL -54 FUEL SYSTEM

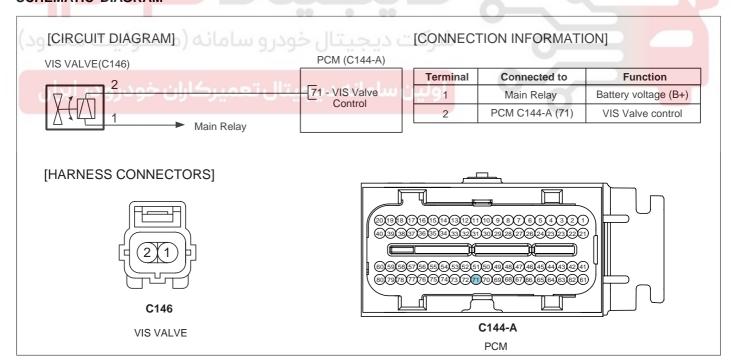
VARIABLE INTAKE SOLENOID (VIS) VALVE

DESCRIPTION E5051AC7


Variable Intake Solenoid (VIS) Valve is installed on the intake manifold and isolates or not the one bank from the other banks to improve the intake efficiency.

- Low/Middle Speed: VIS Valve Close Resonation Effect Improving Intake Efficiency
- 2. High Speed: VIS Valve Open Improving Intake Inertia Effect Improving Intake Efficiency

FL -55

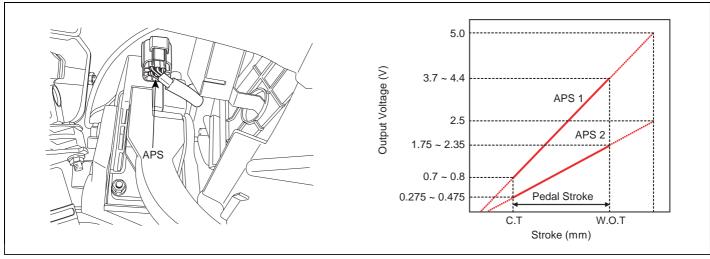


EGRF258A

SPECIFICATION

Item	Specification	
Coil Resistance ()	30.0 ~ 35.0 at 22 (71.6)	

SCHEMATIC DIAGRAM



SGHF17012N

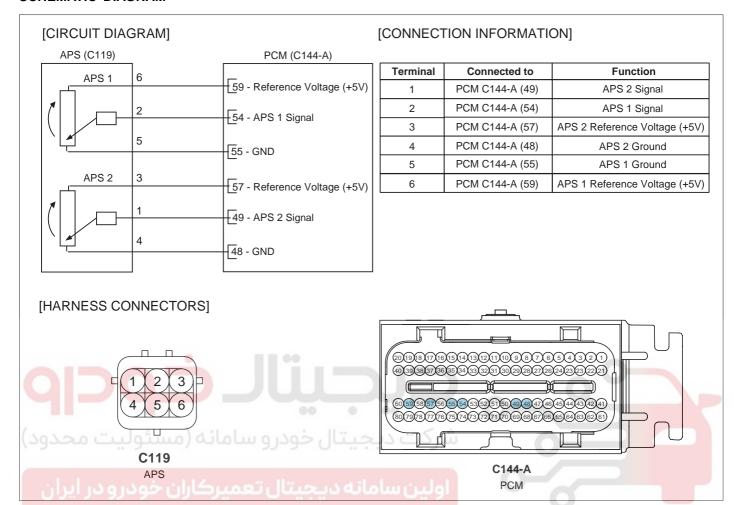
FL -56 FUEL SYSTEM

ACCELERATOR POSITION SENSOR (APS)

DESCRIPTION E57A3E43

Accelerator Position Sensor (APS) is installed on the accelerator pedal module and detects the rotation angle of the accelerator pedal. The APS is one of the most important sensors in engine control system, so it consists of the two sensors which adapt individual sensor power and ground line. The second sensor monitors the first sensor and its output voltage is half of the first one. If the ratio of the sensor 1 and 2 is out of the range (approximately 1/2), the diagnostic system judges that it is abnormal.

SPECIFICATION

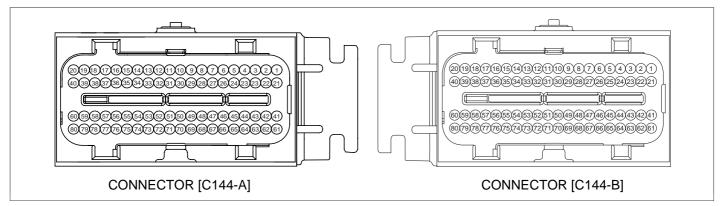

Pedal Position	Output Voltage (V) [Vref = 5.0V]		
redai Position	APS1	APS2	
C.T	0.7 ~ 0.8V	0.275 ~ 0.475V	
W.O.T	3.8 ~ 4.4V	1.75 ~ 2.35V	

Item	Sensor Resistance		
APS1	0.7 ~ 1.3kΩ at 20	(68)
APS2	1.4 ~ 2.6kΩ at 20	(68)

FL -57

SGHF17014N

SCHEMATIC DIAGRAM


FL -58 FUEL SYSTEM

POWERTRAIN CONTROL MODULE (PCM)

POWERTRAIN CONTROL MODULE

(PCM) E9599480

1. PCM HARNESS CONNECTOR

SGHF17018N

2. PCM TERMINAL FUNCTION

CONNECTOR [C144-A]

PinNo.	Description	Connected to
(2920	2nd CAN [High]	Multi-Purpose Check Connector
2	2nd CAN [Low]	Multi-Purpose Check Connector
3)_	For Auto transaxle Control	اولین
4	For Auto transaxle Control	
5	For Auto transaxle Control	
6	For Auto transaxle Control	
7	For Auto transaxle Control	
8	For Auto transaxle Control	
9	For Auto transaxle Control	
10	For Auto transaxle Control	
11	For Auto transaxle Control	
12	-	
13	For Auto transaxle Control	
14	•	
15	Alternator load signal input	Alternator
16	Cruise Switch ground	Cruise Switch
17	-	
18	Air conditioner switch "ON" signal input	Air Conditioner Control Module
19	-	
20	For Auto transaxle Control	

FL -59

PinNo.	Description	Connected to
21	Brake switch signal input	Brake Switch
22	For Auto transaxle Control	
23	Brake lamp signal input	Brake Lamp
24	For Auto transaxle Control	
25	Cruise Switch signal input	Cruise Switch
26	Air conditioner blower switch signal input	Air Conditioner Control Module
27	Diagnostic Data Line (K-Line)	Data Link Connector (DLC)
28	-	
29	-	
30	-	
31	-	
32	A/C Pressure Sensor signal input	A/C Pressure Transducer
33	Sensor ground	A/C Pressure Transducer, Power Steering Pressure Sensor (PSPS)
34	-	
35	For Auto transaxle Control	
36		
37	- 00 0 00	0
(38	Battery voltage supply after main relay	Main Relay
39	Battery voltage supply after main relay	Main Relay
40	Battery voltage supply after main relay	Main Relay
41	CAN [High]	ABS Control Module, ESC Control Module
42	CAN [Low]	ABS Control Module, ESC Control Module
43	Main Relay control output	Main Relay
44	Intake Air Temperature Sensor signal input	Intake Air Temperature Sensor (IATS)
45	Immobilizer communication line	Immobilizer
46	Power Steering Pressure Sensor signal input	Power Steering Pressure Sensor (PSPS)
47	Mass Air Flow Sensor signal input	Mass Air Flow Sensor (MAFS)
48	Accelerator Position Sensor #2 ground	Accelerator Position Sensor (APS) #2
49	Accelerator Position Sensor #2 signal input	Accelerator Position Sensor (APS) #2
50	For Autotransaxle Control	
51	Cruise "SET" lamp control output	Cruise "SET" Lamp (Cluster)
52	Vehicle speed signal input	ABS/ESC Control Module
53	Intake Air Temperature Sensor ground	Intake Air Temperature Sensor (IATS)
54	Accelerator Position Sensor #1 signal input	Accelerator Position Sensor (APS) #1
55	Accelerator Position Sensor #1 ground	Accelerator Position Sensor (APS) #1
56	-	
57	Accelerator Position Sensor #2 power supply	Accelerator Position Sensor (APS) #2

FL -60 FUEL SYSTEM

PinNo.	Description	Connected to
58	Sensor Power Supply (+5V)	Air Conditioner Pressure Sensor, Power Steering Pressure Sensor (PSPS)
59	Accelerator Position Sensor #1 power supply	Accelerator Position Sensor (APS) #1
60	For Auto transaxle Control	
61	Engine speed signal output	Cluster (Tachometer)
62	Fuel consumption signal output	Trip Computer
63	Malfunction Indicator Lamp (MIL) control output	Cluster (Malfunction Indicator Lamp)
64	Air Conditioner Compressor Relay control output	Air Conditioner Compressor Relay
65	For Auto transaxle Control	
66	Cooling Fan control output (PWM)	Cooling Fan Control Module
67	For Auto transaxle Control	
68	Throttle Position Sensor signal (PWM) output	ABS Control Module, ESP Control Module
69	Cruise "MAIN" lamp control output	Cruise "MAIN" Lamp (Cluster)
70	Fuel Pump Relay control output	Fuel Pump Relay
71	Variable Intake Solenoid Valve control output	Variable Intake Solenoid (VIS) Valve
72	Immobilizer lamp control output	Immobilizer Lamp
73	For Auto transaxle Control	
74	For Auto transaxle Control	
75	For Auto transaxle Control	شرکت
76	For Auto transaxle Control	
77	For Auto transaxle Control	اولين
78	Purge Control Solenoid Valve control output	Purge Control Solenoid Valve (PCSV)
79	-	-
80	-	-

CONNECTOR [C144-B]

PinNo.	Description	Connected to
1	ETC Motor [-] control output	ETC Motor (in ETC Module)
2	ETC Motor [+] control output	ETC Motor (in ETC Module)
3	For Auto transaxle Control	
4	CVVT Oil Temperature Sensor signal input	CVVT Oil Temperature Sensor (OTS)
5	-	
6	For Autotransaxle Control	
7	Engine Coolant Temperature Sensor signal input	Engine Coolant Temperature Sensor (ECTS)
8	Manifold Absolute Pressure Sensor signal input	Manifold Absolute Pressure Sensor (MAPS)
9	For Auto transaxle Control	
10	For Auto transaxle Control	
11	Manifold Absolute Pressure Sensor power supply	Manifold Absolute Pressure Sensor (MAPS)
12	Battery voltage supply after ignition switch	Ignition Switch

FL -61

PinNo.	Description	Connected to
13	Throttle Position Sensor #2 power supply	Throttle Position Sensor (TPS) #2
14	Throttle Position Sensor #1 ground	Throttle Position Sensor (TPS) #1
15	Camshaft Position Sensor [Bank 2] power supply	Camshaft Position Sensor (CMPS) [Bank 2]
16	Throttle Position Sensor #1 power supply	Throttle Position Sensor (TPS) #1
17	Camshaft Position Sensor [Bank 2] ground	Camshaft Position Sensor (CMPS) [Bank 2]
18	Camshaft Position Sensor [Bank 1] ground	Camshaft Position Sensor (CMPS) [Bank 1]
19	Ignition Coil (Cylinder #6) control output	Ignition Coil (Cylinder #6)
20	-	
21	Crankshaft Position Sensor [High] signal input	Crankshaft Position Sensor (CKPS)
22	For Auto transaxle Control	
23	Sensor Shield	Crankshaft Position Sensor (CKPS), Knock Sensor (KS) #1,2
24	Camshaft Position Sensor [Bank 2] signal input	Camshaft Position Sensor (CMPS) [Bank 2]
25	Camshaft Position Sensor [Bank 1] signal input	Camshaft Position Sensor (CMPS) [Bank 1]
26	-	
27		
28	H <mark>eated Ox</mark> ygen Se <mark>n</mark> sor [Bank 2 / Sensor 1] ground	HO2S (B2/S1)
29	Heated Oxygen Sensor [Bank 2 / Sensor 2] ground	HO2S (B2/S2)
30	Heated Oxygen Sensor [Bank 1 / Sensor 1] ground	HO2S (B1/S1)
31	Heated Oxygen Sensor [Bank 1 / Sensor 2] ground	HO2S (B1/S2)
32	Camshaft Position Sensor [Bank 1] power supply	Camshaft Position Sensor (CMPS) [Bank 1]
33	Engine Coolant Temperature Sensor ground	Engine Coolant Temperature Sensor (ECTS)
34	Sensor ground	Manifold Absolute Pressure Sensor (MAPS), CVVT Oil Temperature Sensor (OTS)
35	Power ground	Chassis Ground
36	Power ground	Chassis Ground
37	Power ground	Chassis Ground
38	Power ground	Chassis Ground
39	Power ground	Chassis Ground
40	Ignition Coil (Cylinder #4) control output	Ignition Coil (Cylinder #4)
41	Crankshaft Position Sensor [Low] signal input	Crankshaft Position Sensor (CKPS)
42	For Auto transaxle Control	
43	For Auto transaxle Control	
44	For Auto transaxle Control	
45	For Auto transaxle Control	
46	-	
47	-	
48	Throttle Position Sensor #1 signal input	Throttle Position Sensor (TPS) #1
49	Heated Oxygen Sensor [Bank 1 / Sensor 1] signal input	HO2S (B1/S1)

FL -62 FUEL SYSTEM

PinNo.	Description	Connected to
50	Heated Oxygen Sensor [Bank 1 / Sensor 2] signal input	HO2S (B1/S2)
51	Heated Oxygen Sensor [Bank 2 / Sensor 1] signal input	HO2S (B2/S1)
52	Heated Oxygen Sensor [Bank 2 / Sensor 2] signal input	HO2S (B2/S2)
53	Knock Sensor (KS) #2 [High] signal input	Knock Sensor (KS) #2 [High]
54	Knock Sensor (KS) #2 [Low] signal input	Knock Sensor (KS) #2 [Low]
55	Knock Sensor (KS) #1 [Low] signal input	Knock Sensor (KS) #1 [Low]
56	Knock Sensor (KS) #1 [High] signal input	Knock Sensor (KS) #1 [High]
57	Throttle Position Sensor #2 signal input	Throttle Position Sensor (TPS) #2
58	Throttle Position Sensor #2 ground	Throttle Position Sensor (TPS) #2
59	For Auto transaxle Control	
60	Ignition Coil (Cylinder #2) control output	Ignition Coil (Cylinder #2)
61	CVVT Oil Control Valve [Bank 2] control output	CVVT Oil Control Valve (OCV) [Bank 2]
62	CVVT Oil Control Valve [Bank 1] control output	CVVT Oil Control Valve (OCV) [Bank 1]
63	Injector (Cylinder #2) control output	Injector (Cylinder #2)
64	Injector (Cylinder #3) control output	Injector (Cylinder #3)
65		
66	دیجیتال خودرو سامانه (مسئولیت م	شردت
67	Heated Oxygen Sensor [Bank 2 / Sensor 1] Heater control output	HO2S (B2/S1)
68	Injector (Cylinder #4) control output	Injector (Cylinder #4)
69	Injector (Cylinder #5) control output	Injector (Cylinder #5)
70	Heated Oxygen Sensor [Bank 1 / Sensor 1] Heater control output	HO2S (B1/S1)
71	Injector (Cylinder #6) control output	Injector (Cylinder #6)
72	Injector (Cylinder #1) control output	Injector (Cylinder #1)
73	Heated Oxygen Sensor [Bank 2 / Sensor 2] Heater control output	HO2S (B2/S2)
74	Heated Oxygen Sensor [Bank 1 / Sensor 2] Heater control output	HO2S (B1/S2)
75	For Auto transaxle Control	
76	Battery Power	Battery
77	Ignition Coil (Cylinder #3) control output	Ignition Coil (Cylinder #3)
78	Ignition Coil (Cylinder #5) control output	Ignition Coil (Cylinder #5)
79	Ignition Coil (Cylinder #1) control output	Ignition Coil (Cylinder #1)
80		

FL -63

GASOLINE ENGINE CONTROL SYSTEM

3. PCM TERMINAL INPUT/OUTPUT SIGNAL

CONNECTOR [C144-A]

Pin No.	Description	Condition	Туре	Level	Test Result
1	2nd CAN [High]	ldle	DC	2.0 ~ 3.0V	2.5V
2	2nd CAN [Low]	ldle		2.0 ~ 3.0V	2.5V
3	For Auto transaxle Control				
4	For Auto transaxle Control				
5	For Auto transaxle Control				
6	For Auto transaxle Control				
7	For Auto transaxle Control				
8	For Auto transaxle Control				
9	For Auto transaxle Control				
10	For Auto transaxle Control				
11	For Auto transaxle Control				
12					
13	For Auto transaxle Control			~ 0-	
14					
,				High: Battery Voltage	13.6V
(15)	Alternator load signal input	Idle	PULSE	Low: Max. 1.5V	0V
				140 ~ 190Hz	160Hz
16	Cruise Switch ground	بن سامانه د	ا اول		
17					
18	Air conditioner switch "ON" signal input	A/CON Relay OFF	DC	Battery Voltage	9.1V
10	All conditioner switch ON signal input	A/CON Relay ON		Max. 1.0V	0.1V
19	-				
20	For Auto transaxle Control				
21	Brake switch signal input	Brake pedal releasing	DC	Battery Voltage	12.7V
	Drake owien eighar inpac	Brake pedal pressing	50	Max. 0.5V	0.03V
22	For Auto transaxle Control				
23	Brake lamp signal input	Brake pedal releasing	DC	Max. 0.5V	0V
	brake ramp signal imput	Brake pedal pressing		Battery Voltage	13.0V
24	For Auto transaxle Control				
25	Cruise Switch signal input				

FL -64 FUEL SYSTEM

Pin No.	Description	Condition	Туре	Level	Test Result
26	Air conditioner blower quitab circul input	A/CON OFF	DC	Max. 1.0V	0V
26	Air conditioner blower switch signal input	A/CON ON	DC	Battery Voltage	11.9V
		When		High: Min. Vbatt * 80%	11.3V
0.7	Diagnostic Data Line (K-Line)	transmitting	ם וו פר	Low: Max. Vbatt * 20%	0.14V
27	Diagnostic Data Line (K-Line)	When	PULSE	High: Min. Vbatt * 70%	11.3V
		receiving		Low: Max. Vbatt * 30%	0.32V
28	-				
29	-				
30	-				
31	-				
		A/C OFF			
32	A/C Pressure Sensor signal input	A/C ON	DC	0 ~ 5.0V	1.85 2.2V
33	Sensor ground	Idle	DC	Max. 50mV	40mV
34				0-	
35	For Auto transaxle Control			_ 4_	
36			- ·		
37	، حودرو سامانه (مسئولیت محد	ت دیجیتار	سرک		
38	Battery voltage supply after main relay	IG OFF	DC	Max. 1.0V	0V
30	battery voltage supply after main relay	IG ON	اوليا	Battery Voltage	12.1V
39	Battery voltage supply after main relay	IG OFF	DC	Max. 1.0V	0V
33	Dattery voltage supply after main relay	IG ON	DC	Battery Voltage	12.1V
40	Battery voltage supply after main relay	IG OFF	DC	Max. 1.0V	0V
	Dattery voltage supply after main relay	IG ON	50	Battery Voltage	12.1V
41	CAN [High]	RECESSIVE	PULSE	2.0 ~ 3.0V	3.85V
41	CAN [riigh]	DOMINANT	FULSE	2.75 4.5V	2.5V
42	CAN [Low]	RECESSIVE	PULSE	2.0 ~ 3.0V	2.55V
42	CAN [LOW]	DOMINANT	PULSE	2.75 4.5V	1.34V
43	Main Relay control output	Relay ON	DC	Battery Voltage	12.3V
	main relay control output	Relay OFF	50	Max. 1.0V	0.87V
44	Intake Air Temperature Sensor signal input	Idle	Analog	0 ~ 5.0V	1.86V
45	Immobilizer communication line				
46	Power Steering Pressure Sensor	Neutral	Analog	0 ~ 5.0V	0.89V
	signal input	Full-Turn	Arialog	U ~ 3.UV	4.16V

FL -65

Pin No.	Description	Condition	Туре	Level	Test Result
				High: Vref	5.04V
		ldle		Low: Max. 0.5V	0.27V
47	Mass Air Flow Conser signal input		DIII OF	Idle: 3.0KHz	
47	Mass Air Flow Sensor signal input		PULSE	High: Vref	5.04V
		3,000 rpm		Low: Max. 0.5V	0.27V
				3000rpm: 4.5 kHz	
48	Accelerator Position Sensor #2 ground	Idle	DC	Max. 50mV	35mV
40	Appelarator Desition Concer #2 circust input	C.T	Analog	0.3 ~ 0.9V	0.4V
49	Accelerator Position Sensor #2 signal input	W.O.T	Analog	1.5 ~ 3.0V	2.1V
50	For Auto transaxle Control				
51	Cruise "SET" lamp control output				
52	Vahiala apand aignal input	Vehicle	PULSE	High: Min. 5.0V	12.6V
52	Vehicle speed signal input	running	PULSE	Low: Max. 1.0V	0.2V
53	Intake Air Temperature Sensor ground	Idle	DC	DC Max. 50mV	34mV
54		C.T W.O.T	Analog	0.3 ~ 0.9V	0.77V
54	Accelerator Position Sensor #1 signal input		Analog	4.0 ~ 4.8V	4.23V
55	Accelerator Position Sensor #1 ground	Idle	DC	DC Max. 50mV	36mV
56	Fuel Tank Pressure Sensor power supply	IG OFF	DC	Max. 0.5V	0V
56		IG ON	DC	4.9 ~ 5.1V	5.01V
57	Accelerates Resitive Companies 2 months	IG OFF	Jol _{DC}	Max. 0.5V	0V
37	Accelerator Position Sensor #2 power supply	IG ON	DC	4.9 ~ 5.1V	5.08V
58	Sangar Dawar Supply (151/)	IG OFF		Max. 0.5V	0V
36	Sensor Power Supply (+5V)	IG ON		4.9 ~ 5.1V	5.08V
F0	Appelarator Pacition Concer#4 navver cumbly	IG OFF	DC	Max. 0.5V	0V
59	Accelerator Position Sensor #1 power supply	IG ON	DC	4.9 ~ 5.1V	5.08V
60	For Auto transaxle Control				
				High: Battery Voltage	13.0V
61	Engine speed signal output	Idle	PULSE	Low: Max. 0.5V	0V
				20~26Hz	35Hz
62	Fuel consumption signal output	Idle	PULSE	High: Battery Voltage or Vref	12.8V
				Low: Max. 0.5V	0V
60	Malfunction Indicator Lamp (MIL)	MIL OFF	DC	High: Battery Voltage	4.24V
63	control output	MIL ON	DC	Low: Max. 2.0V	0V
0.4	Air Conditioner Compressor Relay	A/CON OFF	DC	Battery Voltage	13.0V
64	control output	A/CON ON	DC	Max. 1.0V	0.14V
65	For Auto transaxle Control				

FL -66 FUEL SYSTEM

Pin No.	Description	Condition	Туре	Level	Test Result
				High: Vref	12.3V
66	Cooling Fan control output (PWM)	A/CON ON	PULSE	Low: 0 ~ 0.5 V	0V
					300Hz
67	For Auto transaxle Control				
				High: Battery Voltage	12.3V
68	Throttle Position Sensor signal (PWM) output	Idle	PULSE	Low: 0 ~ 0.5 V	0V
	(,,				100Hz
69	Cruise "CRUISE" lamp control output				
70	Fuel Pump Relay control output	Relay OFF	DC	Battery Voltage	12.5V
70		Relay ON	DC	Max. 1.0V	0.09V
71	Variable Intake Solenoid Valve control output	Active	DC	Max. 1.0V	0.1V
/ 1		Inactive	DC	Battery Voltage	12.4V
72	Immobilizer lamp control output				
73	For Auto transaxle Contro				
74	For Auto transaxle Contro			_ 0	
75	For Auto transaxle Contro			_ Q	
76	For Auto transaxle Contro	0 00			
77	For Auto transaxle Contro	تديجيتال	شرک		
				High: Battery Voltage	13.2V
78	Purge Control Solenoid Valve control output	Inactive Active	PULSE	Low: Max. 1.0V	V80.0
		7101110		0	16Hz
79	-				
80	-				

CONNECTOR [C144-B]

Pin No.	Description	Condition	Туре	Level	Test Result
				High: Battery Voltage	13.3V
1	ETC Motor [-] control output	Idle	PULSE	Low: Max. 1.0V	0.3V
					3.14KHz
	ETC Motor [+] control output	Idle	PULSE	High: Battery Voltage	13.3V
2				Low: Max. 1.0V	0.4V
					3.14KHz
3	For Autotransaxle Control				
4	CVVT Oil Temperature Sensor signal input	Idle	Analog	0.5 ~ 4.5V	1.68V
5	-				
6	For Auto transaxle Control				
7	Engine Coolant Temperature Sensor signal input	ldle	Analog	0.5 ~ 4.5V	0.47V

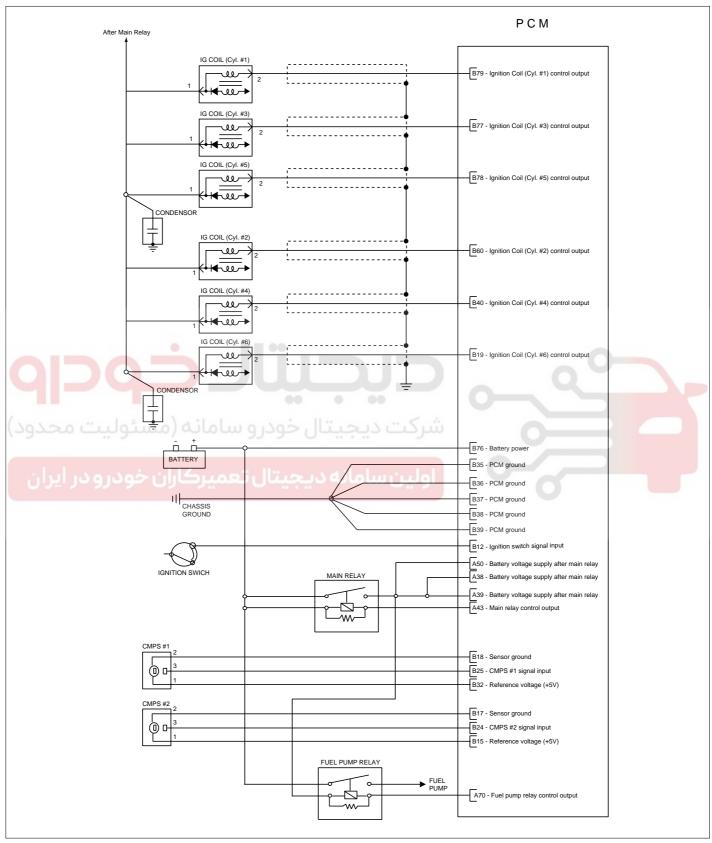
FL -67

Pin No.	Description	Condition	Туре	Level	Test Result
8	Manifold Absolute Pressure Sensor	IG ON	Analog	3.9 ~ 4.1V	4.01V
0	signal input	ldle	- Analog	0.8 ~ 1.6V	1.59V
9	For Auto transaxle Control				
10	For Auto transaxle Control				
11	Manifold Absolute Pressure Sensor	IG OFF	DC	Max. 0.5V	0V
1 1	power supply	IG ON	DC	4.9 ~ 5.1V	5.08V
12	Battery voltage supply after ignition switch	IG OFF	DC	Max. 0.5V	0V
12	Battery voltage supply after ignition switch	IG ON	DC	Battery Voltage	12.2V
13	Throttle Position Sensor #2 power supply	IG OFF	DC	Max. 0.5V	0V
13	Throttle Position Sensor #2 power supply	IG ON	DC	4.9 ~ 5.1V	5.05V
14	Throttle Position Sensor #1 ground	ldle	DC	Max. 50mV	30mV
15	Camshaft Position Sensor [Bank	IG OFF	DC	Max. 0.5V	0V
13	2] power supply	IG ON	DC	4.9 ~ 5.1V	5.06V
16	Throttle Position Sensor #1 newer gumbly	IG OFF	DC	Max. 0.5V	0V
10	Throttle Position Sensor #1 power supply	IG ON	DC	4.9 ~ 5.1V	5.06V
17	Camshaft Position Sensor [Bank 2] ground	Idle	DC	Max. 50mV	30mV
18	Camshaft Position Sensor [Bank 1] ground	Idle	DC	Max. 50mV	30mV
(292	ل خودر و سامانه (مسئولیت مح	ت دیجیتا	شرک	1st: 300~400V	272V
19	Ignition Coil (Cylinder #6) control output	Idle	PULSE	ON: Max. 2V	1.2V
		ین سامانه د	اول	0-/	5.8Hz
20	J., J., J. D., J., O			0	
21	Crankshaft Position Sensor [High] signal input	Idle	Sine Wave	Vp_p: Min.1.0V	8V 700Hz
22	For Autotransaxle Control				
23	Sensor Shield	ldle	DC	Max. 50mV	32mV
				High: Vref	5.08V
24	Camshaft Position Sensor [Bank 2] signal input	Idle	PULSE	Low: Max. 0.5V	0.06V
	zj signal input				40Hz
				High: Vref	5.08V
25	Camshaft Position Sensor [Bank 1] signal input	ldle	PULSE	Low: Max. 0.5V	0.06V
	ij sigilal lilput				40Hz
26	-				
27	-				
28	Heated Oxygen Sensor [Bank 2 / Sensor 1] ground	Idle	DC	Max. 50mV	27mV
29	Heated Oxygen Sensor [Bank 2 / Sensor 2] ground	Idle	DC	Max. 50mV	27mV
30	Heated Oxygen Sensor [Bank 1 / Sensor 1] ground	Idle	DC	Max. 50mV	26V

FL -68 FUEL SYSTEM

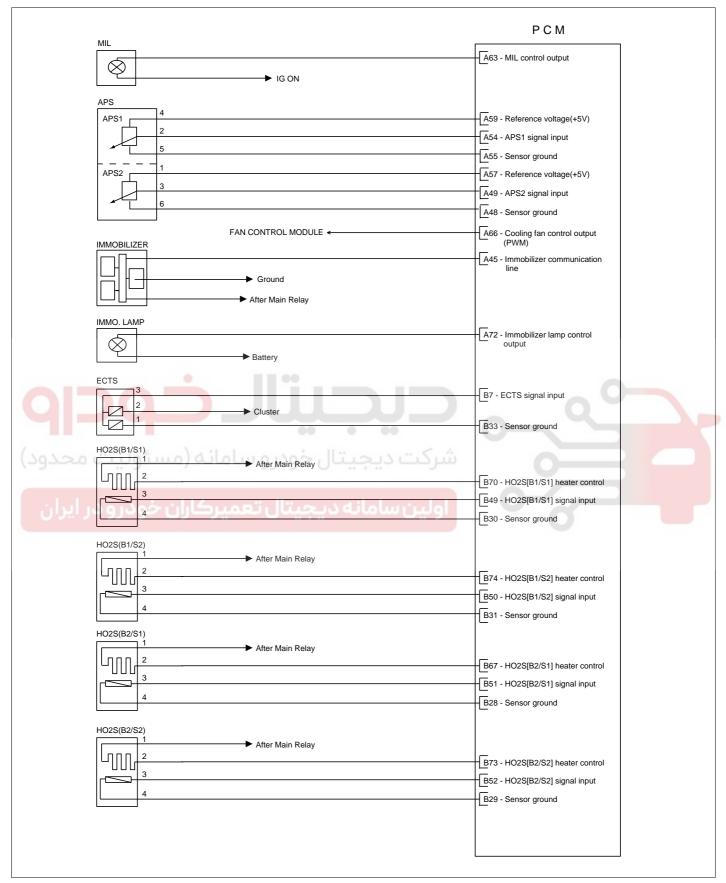
Pin No.	Description	Condition	Туре	Level	Test Result
31	Heated Oxygen Sensor [Bank 1 / Sensor 2] ground	ldle	DC	Max. 50mV	27mV
32	Camshaft Position Sensor [Bank 1] power supply	IG OFF	DC	Max. 0.5V	0V
		IG ON		4.9 ~ 5.1V	5.06V
33	Engine Coolant Temperature Sensor ground	Idle	DC	Max. 50mV	13mV
34	Sensor ground	Idle	DC	Max. 50mV	13mV
35	Power ground	Idle	DC	Max. 50mV	0mV
36	Power ground	Idle	DC	Max. 50mV	0mV
37	Power ground	Idle	DC	Max. 50mV	0mV
38	Power ground	Idle	DC	Max. 50mV	2mV
39	Power ground	Idle	DC	Max. 50mV	2mV
		Idle	PULSE	1st: 300~400V	263V
40	Ignition Coil (Cylinder #4) control output			ON: Max. 2V	1.4V
					5.8Hz
44	Crankshaft Position Sensor [Low] signal input	Idle	Sine	Vp_p: Min.1.0V	8V
41			Wave	0	700Hz
42	For Auto transaxle Control				
43	For Auto transaxle Control	تاديحينا	شرک		
44	For Auto transaxle Control		-		
45	For Auto transaxle Control	s of the land		0-/_	
46	يجيعان فعميركران فوقاروقار أيزار		291		
47	-				
48	Throttle Position Sensor #1 signal input	C.T	Analog	0.25 ~ 0.9V	
40		W.O.T		Min. 4.0V	
49	Heated Oxygen Sensor [Bank 1 / Sensor 1] signal input	Engine Running	DC	Rich: 0.6 1.0V	0.95V
49				Lean: 0 ~ 0.4V	0.13V
F0	Heated Oxygen Sensor [Bank 1 / Sensor 2] signal input	Engine Running	DC	Rich: 0.6 1.0V	0.88V
50				Lean: 0 ~ 0.4V	0.21V
51	Heated Oxygen Sensor [Bank 2 / Sensor 1] signal input	Engine Running	DC	Rich: 0.6 1.0V	0.91V
				Lean: 0 ~ 0.4V	0.18V
52	Heated Oxygen Sensor [Bank 2 / Sensor 2] signal input	Engine Running	DC	Rich: 0.6 1.0V	0.89V
				Lean: 0 ~ 0.4V	0.22V
	Knock Sensor (KS) #2 [High] signal input	Knocking	Variable	-0.3 ~ 0.3 V	, -v.
53		Normal	Fre- quency	0 V	1.7V
	Knock Sensor (KS) #2 [Low] signal input	Knocking	Variable	-0.3 ~ 0.3 V	1.7V
54		Normal	Fre- quency	0 V	

FL -69


Pin No.	Description	Condition	Туре	Level	Test Result
55	Knock Sensor (KS) #1 [Low] signal input	Knocking	Variable	-0.3 ~ 0.3 V	1.7V\
		Normal	Fre- quency	0 V	
56	Knock Sensor (KS) #1 [High] signal input	Knocking	Variable	-0.3 ~ 0.3 V	1.7V
		Normal	Fre- quency	0 V	
57	Throttle Position Sensor #2 signal input	C.T	Analog	Min. 4.0V	
		W.O.T		0.25 ~ 0.9V	
58	Throttle Position Sensor #2 ground	Idle	DC	Max. 50mV	17mV
59	For Auto transaxle Control				
	Ignition Coil (Cylinder #2) control output	Idle	PULSE	1st: 300~400V	266V
60				ON: Max. 2V	1.3V
					5.8Hz
				Battery Voltage	14.5V
	CVVT Oil Control Valve [Bank 2]		_	Max. 1.0V	0.1V
61	control output	Idle	PULSE	Duty variance when operating the accelerator	128Hz
	***	0 00		Battery Voltage	14.3V
(202)	ل خودره سامانه (مسئولييت محا	ت دیمیتا	شرک	Max. 1.0V	0.1V
62	CVVT Oil Control Valve [Bank 1] control output	idle پن سامانه د	PULSE	Duty variance when operating the accelerator	128Hz
	Injector (Cylinder #2) control output	ldle	PULSE	High: Battery Voltage	13.8V
				Low: Max. 1.0V	0.13V
63				Vpeak: Max. 80V	57.5V
					5.8Hz
	Injector (Cylinder #3) control output	ldle	PULSE	High: Battery Voltage	13.8V
				Low: Max. 1.0V	0.13V
64				Vpeak: Max. 80V	56.8V
					5.8Hz
65	-				
66	-				
	Heated Oxygen Sensor [Bank 2 / Sensor 1] Heater control output	Engine Running	PULSE	High: Battery Voltage	13.8V
67				Low: Max. 1.0V	0.17V
					16Hz
68	Injector (Cylinder #4) control output	Idle	PULSE	High: Battery Voltage	13.8V
				Low: Max. 1.0V	0.13V
				Vpeak: Max. 80V	56.8V
					5.8Hz

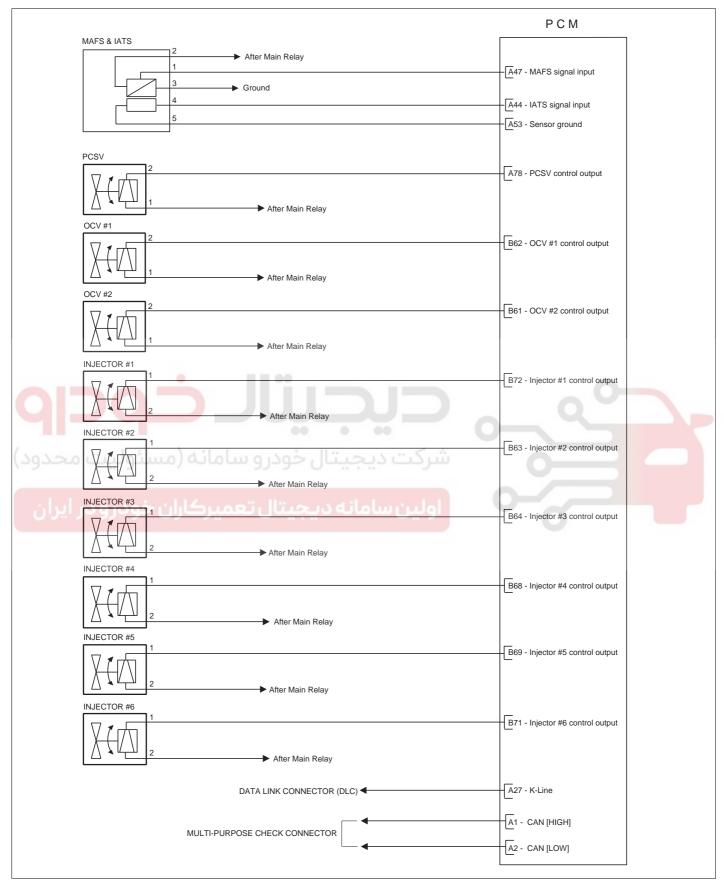
FL -70 FUEL SYSTEM

Pin No.	Description	Condition	Туре	Level	Test Result
69	Injector (Cylinder #5) control output	ldle	PULSE	High: Battery Voltage	13.7V
				Low: Max. 1.0V	0.13V
				Vpeak: Max. 80V	56.8V
					5.8Hz
	Heated Oxygen Sensor [Bank 1 / Sensor 1] Heater control output	Engine Running	PULSE	High: Battery Voltage	13.8V
70				Low: Max. 1.0V	0.17V
					16Hz
	Injector (Cylinder #6) control output	Idle	PULSE	High: Battery Voltage	13.8V
71				Low: Max. 1.0V	0.13V
' '				Vpeak: Max. 80V	56.8V
					5.8Hz
	Injector (Cylinder #1) control output	Idle	PULSE	High: Battery Voltage	13.8V
72				Low: Max. 1.0V	0.13V
12				Vpeak: Max. 80V	56.8V
					5.8Hz
	Heated Oxygen Sensor [Bank 2 / Sensor 2] Heater control output	Engine Running	PULSE	High: Battery Voltage	13.9V
73				Low: Max. 1.0V	0.19V
(29	ی خودر و سامانه (مسئولیت محد	ت ڏيجيتار	شرک		16Hz
	Heated Oxygen Sensor [Bank 1 / Sensor 2] Heater control output	Engine Running	PULSE	High: Battery Voltage	13.9V
74				Low: Max. 1.0V	0.18V
				0	16Hz
75	For Auto transaxle Control				
76	Battery Power	Always	DC	Battery Voltage	13.0V
	Ignition Coil (Cylinder #3) control output	ldle	PULSE	1st: 300~400V	266V
77				ON: Max. 2V	1.4V
					5.8Hz
	Ignition Coil (Cylinder #5) control output	ldle	PULSE	1st: 300~400V	267V
78				ON: Max. 2V	1.4V
					5.8Hz
	Ignition Coil (Cylinder #1) control output	Idle	PULSE	1st: 300~400V	268V
79				ON: Max. 2V	1.4V
					5.8Hz
80	-				

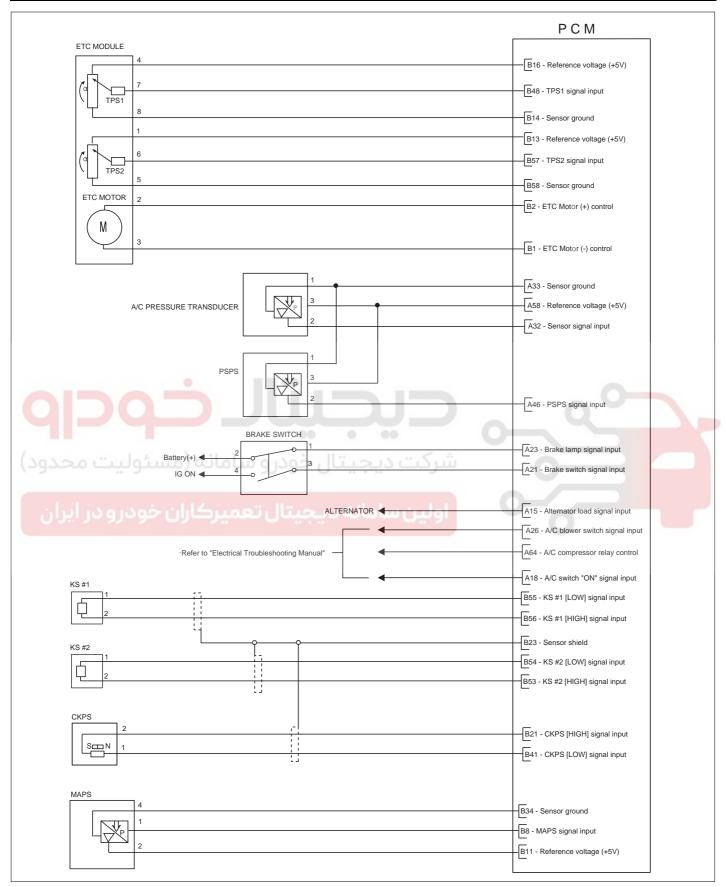

FL -71

CIRCUIT DIAGRAM E9C132A9

UFBG293A

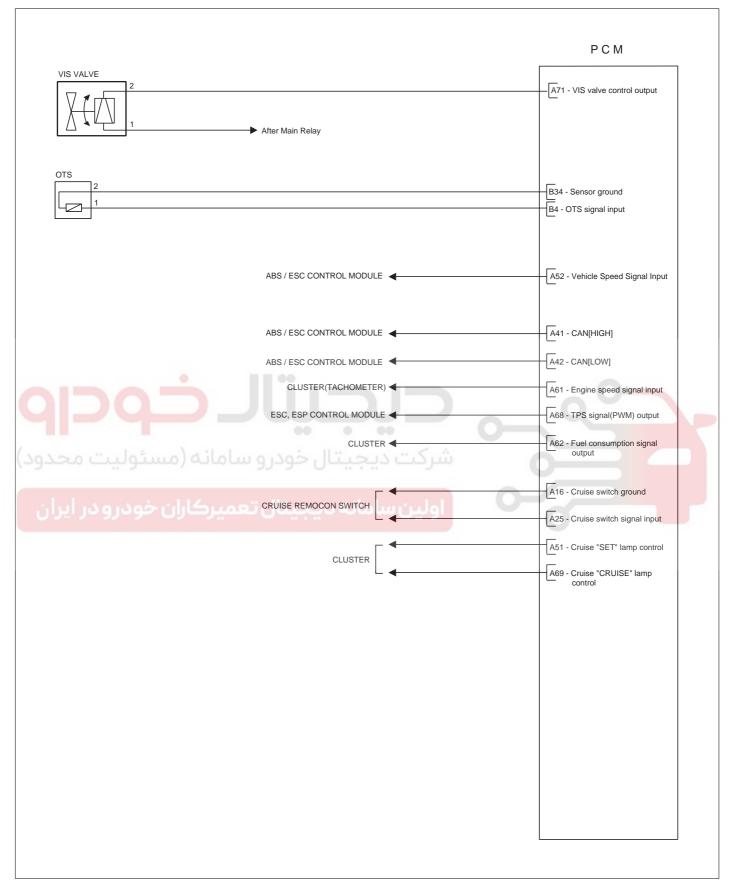

FL -72 FUEL SYSTEM

EFBF294A


GASOLINE ENGINE CONTROL SYSTEM

FL -73

EFBF295A


FL -74 FUEL SYSTEM

SGHF17029N

GASOLINE ENGINE CONTROL SYSTEM

FL -75

SGHFL7101L

FL -76 **FUEL SYSTEM**

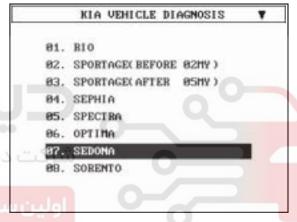
PCM PROBLEM INSPECTION PROCEDURE E09F82D6

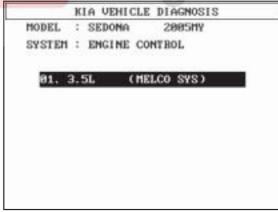
TEST PCM GROUND CIRCUIT: Measure resistance between PCM and chassis ground using the backside of PCM harness connector as PCM side check point. If the problem is found, repair it.

Specification (Resistance): 1

- TEST PCM CONNECTOR: Disconnect the PCM connector and visually check the ground terminals on PCM side and harness side for bent pins or poor contact pressure. If the problem is found, repair it.
- If problem is not found in Step 1 and 2, the PCM could be faulty. If so, replace the PCM with a new one, and then check the vehicle again. If the vehicle operates normally then the problem was likely with the PCM.
- RE-TEST THE ORIGINAL PCM: Install the original PCM (may be broken) into a known-good vehicle and check the vehicle. If the problem occurs again, replace the original PCM with a new one. If problem does not occur, this is intermittent problem (Refer to INTERMITTENT PROBLEM PROCEDURE in BASIC INSPECTION PROCEDURE).

VIN PROGRAMMING PROCEDURE

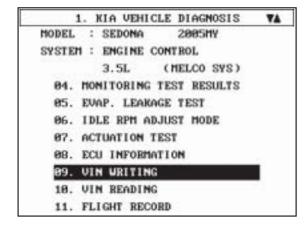

VIN (Vehicle Identification Number) is a number that has the vehicle's information (Maker, Vehicle Type, Vehicle Line/Series, Body Type, Engine Type, Transmission Type, Model Year, Plant Location and so forth. For more information, please refer to the group "GI" in this SER-VICE MANUAL). When replacing a PCM, the VIN must be programmed in the PCM. If there is no VIN in PCM memory, the fault code (DTC P0630) is set.



/!\ CAUTION

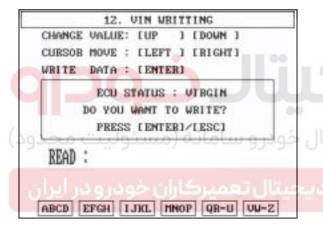
The programmed VIN cannot be changed. When writing the VIN, confirm the VIN carefully

Select "Vehicle" and "Engine" (For example, SE-DONA 3.5L V6).



BFIF4600

GASOLINE ENGINE CONTROL SYSTEM


FL -77

2. Select "VIN WRITING".

BFIF4601

3. Check the PCM status.

BFIF4602

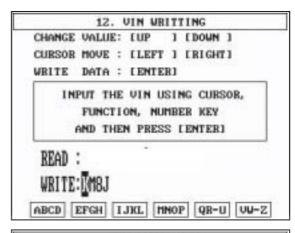
NOTE

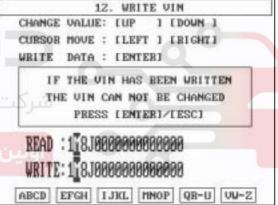
- VIRGIN: VIN is not programmed
- · LEARNT: VIN has been already programmed

Is the PCM status "VIRGIN"?

YES

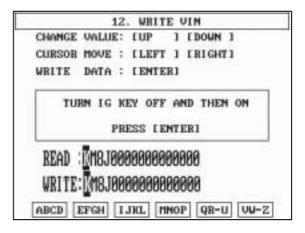
Go to next step 4.


NO


END

4. Write the VIN with cursor, function and number keys.

WARNING


Before pressing the "ENTER" key, confirm the VIN again because the programmed VIN cannot be changed.

BFIF4603

- 5. After verifying the written VIN, press the "ENTER" key.
- 6. Turn the ignition switch OFF, and then turn ON.

BFIF4604

7. Verify the programmed VIN in the PCM memory.

FL -78 FUEL SYSTEM

DTC TROUBLESHOOTING PROCEDURES

INSPECTION CHART FOR DIAGNOSTIC TROUBLE CODES (DTC) E176F9AE

DTC	Description	MIL	PAGE
P0012	A Camshaft Position-Timing Over-Retarded (Bank 1)		FL-83
P0016	Crankshaft Position-Camshaft Position Correlation (Bank 1 / Sensor A)		FL-88
P0018	Crankshaft Position-Camshaft Position Correlation (Bank 2 / Sensor A)		FL-95
P0022	A Camshaft Position-Timing Over-Retarded (Bank 2)		FL-99
P0026	Intake Valve Control Solenoid Circuit Range/Performance (Bank 1)		FL-102
P0028	Intake Valve Control Solenoid Circuit Range/Performance (Bank 2)		FL-109
P0030	HO2S Heater Control Circuit (Bank 1 / Sensor 1)		FL-113
P0031	HO2S Heater Circuit low (Bank 1 / Sensor 1)		FL-118
P0032	HO2S Heater Circuit high (Bank 1 / Sensor 1)	0	FL-121
P0036	HO2S Heater Control Circuit (Bank 1 / Sensor 2)	Q	FL-124
P0037	HO2S Heater Circuit low (Bank 1 / Sensor 2)		FL-129
P0038	HO2S Heater Circuit high (Bank 1 / Sensor 2)		FL-132
P0050	HO2S Heater Control Circuit (Bank 2 / Sensor 1)		FL-135
P0051	HO2S Heater Circuit low (Bank 2 / Sensor 1)	7	FL-140
P0052	HO2S Heater Circuit high (Bank 2 / Sensor 1)		FL-143
P0056	HO2S Heater Control Circuit (Bank 2 / Sensor 2)		FL-146
P0057	HO2S Heater Circuit low (Bank 2 / Sensor 2)		FL-151
P0058	HO2S Heater Circuit high (Bank 2 / Sensor 2)		FL-154
P0076	Intake Valve Control Solenoid Circuit Low (Bank 1)		FL-157
P0077	Intake Valve Control Solenoid Circuit High (Bank 1)		FL-163
P0082	Intake Valve Control Solenoid Circuit Low (Bank 2)		FL-166
P0083	Intake Valve Control Solenoid Circuit High (Bank 2)		FL-172
P0101	Mass or Volume Air Flow Circuit Range/Performance		FL-175
P0102	Mass or Volume Air Flow Circuit Low Input		FL-179
P0103	Mass or Volume Air Flow Circuit high Input		FL-184
P0105	Manifold Absolute Pressure/Barometric Pressure Circuit		FL-188
P0106	Manifold Absolute Pressure/Barometric Pressure Circuit Range/Performance		FL-192
P0107	Manifold Absolute Pressure/Barometric Pressure Circuit Low Input		FL-195
P0108	Manifold Absolute Pressure/Barometric Pressure Circuit High Input		FL-199

FL -79

DTC	Description	MIL	PAGE
P0110	Intake Air Temperature Sensor 1 Circuit		FL-203
P0111	Intake Air Temperature Sensor 1 Circuit Range/Performance		FL-208
P0112	Intake Air Temperature Sensor 1 Circuit Low Input		FL-211
P0113	Intake Air Temperature Sensor 1 Circuit High Input		FL-215
P0116	Engine Coolant Temperature Circuit Range/Performance		FL-220
P0117	Engine Coolant Temperature Circuit Low Input		FL-224
P0118	Engine Coolant Temperature Circuit High Input		FL-228
P0122	Throttle/Pedal Position Sensor/Switch "A" Circuit Low Input		FL-233
P0123	Throttle/Pedal Position Sensor/Switch "A" Circuit High Input		FL-239
P0131	HO2S Circuit Low Voltage (Bank 1 / Sensor 1)		FL-243
P0132	HO2S Circuit High Voltage (Bank 1 / Sensor 1)		FL-250
P0133	HO2S Circuit Slow Response (Bank 1 / Sensor 1)		FL-253
P0134	HO2S Circuit No Activity Detected (Bank 1 / Sensor 1)		FL-255
P0137	HO2S Circuit Low Voltage (Bank 1 / Sensor 2)	0	FL-259
P0138	HO2S Circuit High Voltage (Bank 1 / Sensor 2)	4	FL-266
P0140	HO2S Circuit No Activity Detected (Bank 1 / Sensor 2)		FL-269
P0151	HO2S Circuit Low Voltage (Bank 2 / Sensor 1)		FL-273
P0152	HO2S Circuit High Voltage (Bank 2 / Sensor 1)		FL-280
P0153	HO2S Circuit Slow Response (Bank 2 / Sensor 1)		FL-283
P0154	HO2S Circuit No Activity Detected (Bank 2 / Sensor 1)		FL-285
P0157	HO2S Circuit Low Voltage (Bank 2 / Sensor 2)		FL-289
P0158	HO2S Circuit High Voltage (Bank 2 / Sensor 2)		FL-296
P0160	HO2S Circuit No Activity Detected (Bank 2 / Sensor 2)		FL-299
P0171	System Too Lean (Bank 1)		FL-303
P0172	System Too Rich (Bank 1)		FL-307
P0174	System Too Lean (Bank 2)		FL-303
P0175	System Too Rich (Bank 2)		FL-307
P0196	Engine Oil Temp. Sensor Range / Performance		FL-310
P0197	Engine Oil Temp. Sensor Low Input		FL-314
P0198	Engine Oil Temp. Sensor High Input		FL-318
P0217	Engine Coolant Over Temperature Condition		FL-322
P0222	Throttle/Pedal Position Sensor/Switch "B" Circuit Low Input		FL-326
P0223	Throttle/Pedal Position Sensor/Switch "B" Circuit High Input		FL-333

FL -80 FUEL SYSTEM

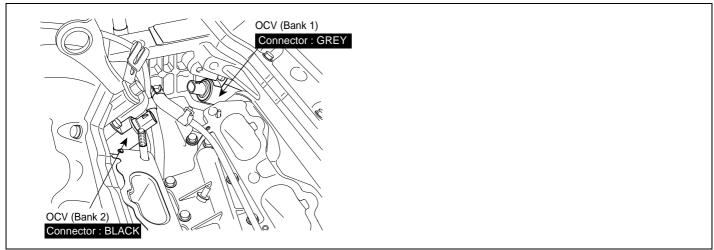
DTC	Description	MIL	PAGE
P0230	Fuel Pump Primary Circuit		FL-337
P0261	Cylinder 1-Injector Circuit Low		FL-342
P0262	Cylinder 1-Injector Circuit High		FL-348
P0264	Cylinder 2-Injector Circuit Low		FL-342
P0265	Cylinder 2-Injector Circuit High		FL-348
P0267	Cylinder 3-Injector Circuit Low		FL-342
P0268	Cylinder 3-Injector Circuit High		FL-348
P0270	Cylinder 4-Injector Circuit Low		FL-342
P0271	Cylinder 4-Injector Circuit High		FL-348
P0273	Cylinder 5-Injector Circuit Low		FL-342
P0274	Cylinder 5-Injector Circuit High		FL-348
P0276	Cylinder 6-Injector Circuit Low		FL-342
P0277	Cylinder 6-Injector Circuit High		FL-348
P0300	Random/Multiple Cylinder Misfire Detected	0	FL-354
P0301	Cylinder 1-Misfire detected	4	FL-360
P0302	Cylinder 2-Misfire detected		FL-360
P0303	Cylinder 3-Misfire detected		FL-360
P0304	Cylinder 4-Misfire detected	ļ	FL-360
P0305	Cylinder 5-Misfire detected		FL-360
P0306	Cylinder 6-Misfire detected		FL-360
P0315	Segment Time Acquisition Incorrect		FL-366
P0325	Knock Sensor 1 Circuit		FL-369
P0326	Knock Sensor 1 Circuit Range/Performance (Bank 1)		FL-373
P0330	Knock Sensor 2 Circuit		FL-375
P0331	Knock Sensor 2 Circuit Range/Performance (Bank 2)		FL-379
P0335	Crankshaft Position Sensor A Circuit		FL-381
P0336	Crankshaft Position Sensor A Circuit Range/Performance		FL-387
P0340	Camshaft Position Sensor A Circuit Malfunction (Bank 1 or Signal Sensor)		FL-391
P0341	Camshaft Position Sensor A Circuit Range/Performance (Bank 1 or Single Sensor)		FL-397
P0346	Camshaft Position Sensor A Circuit Range/Performance (Bank 2)		FL-400
P0351	Ignition Coil 'A' Primary / Secondary Circuit		FL-405
P0352	Ignition Coil 'B' Primary / Secondary Circuit		FL-405
P0353	Ignition Coil 'C' Primary / Secondary Circuit		FL-405

FL -81

DTC	Description	MIL	PAGE
P0354	Ignition Coil 'D' Primary / Secondary Circuit		FL-405
P0355	Ignition Coil 'E' Primary / Secondary Circuit		FL-405
P0356	Ignition Coil 'F' Primary / Secondary Circuit		FL-405
P0420	Catalyst System Efficiency below Threshold (Bank 1)		FL-412
P0430	Catalyst System Efficiency below Threshold (Bank 2)		FL-415
P0444	Evap. Emission System-Purge Ctrl. Valve Circuit Open		FL-417
P0445	Evap. Emission System-Purge Ctrl. Valve Circuit Shorted		FL-423
P0501	Vehicle Speed Sensor A Range/Performance		FL-426
P0504	Brake Switch "A"/"B" Correlation		FL-434
P0506	Idle Air Control System-RPM lower than expected		FL-439
P0507	Idle Air Control System-RPM higher than expected		FL-441
P0532	A/C Refrigerant Pressure Sensor "A" Circuit Low Input		FL-442
P0533	A/C Refrigerant Pressure Sensor "A" Circuit High Input		FL-448
P0562	System Voltage Low	0	FL-452
P0563	System Voltage High	4	FL-459
P0571	Brake Switch "A" Circuit		FL-463
P0601	EEPROM-Check sum Error		FL-468
P0602	EEPROM-Programming Error		FL-471
P0604	Internal Control Module Random Access Memory (RAM) Error		FL-472
P0606	ECM/PCM Processor(ECM-SELF TEST Failed)		FL-475
P0638	Throttle Actuator Control Range/Performance		FL-476
P0641	Sensor Reference Voltage "A" Circuit Open		FL-484
P0646	A/C Clutch Relay Control Circuit Low		FL-489
P0647	A/C Clutch Relay Control Circuit High		FL-495
P0650	Malfunction Indicator Lamp(MIL) Control Circuit		FL-498
P0651	Sensor Reference Voltage "B" Circuit Open		FL-503
P0660	Intake Manifold Tuning Valve Control Circuit/Open (Bank 1)		FL-508
P0685	ECM/PCM Power Relay Control Circuit /Open		FL-513
P1106	Manifold Absolute Pressure Sensor Circuit Short - Intermittent High Input		FL-519
P1107	Manifold Absolute Pressure Sensor Circuit Short - Intermittent Low Input		FL-526
P1111	Intake Air Temperature Sensor Circuit Short - Intermittent High Input		FL-530
P1112	Intake Air Temperature Sensor Circuit Short - Intermittent Low Input		FL-537
P1114	Engine Coolant Temperature Sensor Circuit - Intermittent Low Input		FL-541

FL -82 FUEL SYSTEM

DTC	Description	MIL	PAGE
P1115	Engine Coolant Temperature Sensor Circuit - Intermittent High Input		FL-547
P1295	ETC (Electronic Throttle Control) System Malfunction - Power Management		FL-552
P1523	ETC (Electronic Throttle Control) System Malfunction - Throttle Valve Stuck		FL-555
P2104	ETC (Electronic Throttle Control) System Malfunction - Forced Idle		FL-558
P2105	ETC (Electronic Throttle Control) System Malfunction - Forced Engine Shutdown		FL-561
P2106	ETC (Electronic Throttle Control) System Malfunction - Forced Limited Power		FL-562
P2122	Throttle/Pedal Position Sensor/Switch "D" Circuit Low Input		FL-564
P2123	Throttle/Pedal Position Sensor/Switch "D" Circuit High Input		FL-570
P2127	Throttle/Pedal Position Sensor/Switch "E" Circuit Low Input		FL-573
P2128	Throttle/Pedal Position Sensor/Switch "E" Circuit High Input		FL-579
P2135	Throttle/Pedal Position Sensor/Switch "A" / "B" Voltage Correlation		FL-582
P2138	Throttle/Pedal Position Sensor/Switch "D" / "E" Voltage Correlation		FL-589
P2173	ETC (Electronic Throttle Control) System Malfunction - High Air flow Detected.		FL-593
P2187	System Too Lean at Idle (Additive) (Bank 1)	9	FL-599
P2188	System Too Rich at Idle (Bank 1)	9	FL-603
P2189	System Too Lean at Idle (Additive) (Bank 2)		FL-599
P2190	System Too Rich at Idle (Bank 2)	ľ	FL-603
P2195	HO2S Signal Stuck Lean (Bank 1 / Sensor 1)		FL-606
P2196	HO2S Signal Stuck Rich (Bank 1 / Sensor 1)		FL-612
P2197	HO2S Signal Stuck Lean (Bank 2 / Sensor 1)		FL-615
P2198	HO2S Signal Stuck Rich (Bank 2 / Sensor 1)		FL-621
P2270	HO2S Signal Stuck Lean (Bank 1 / Sensor 2)		FL-624
P2271	HO2S Signal Stuck Rich (Bank 1 / Sensor 2)		FL-630
P2272	HO2S Signal Stuck Lean (Bank 2 / Sensor 2)		FL-633
P2273	HO2S Signal Stuck Rich (Bank 2 / Sensor 2)		FL-639
P2507	ECM/PCM Power Input Signal Low		FL-642
P2610	ECM/PCM Internal Engine Off Timer Performance		FL-645
U0001	CAN Communication Malfunction		FL-648



: MIL ON & MEMORY : MIL OFF & MEMORY

FL -83

DTC P0012 "A" CAMSHAFT POSITION-TIMING OVER-RETARDED (BANK 1)

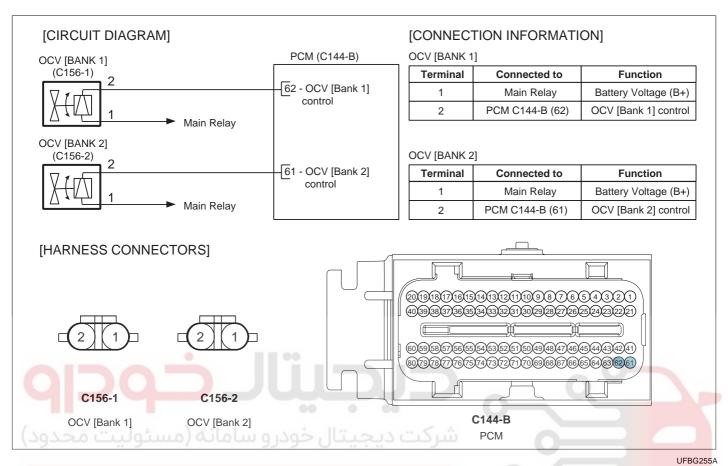
COMPONENT LOCATION EA83D35B

EGRF600A

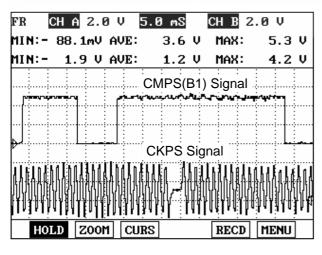
GENERAL DESCRIPTION E5E4C4FB

The CVVT (Continuously Variable Valve Timing) system is installed to the chain sprocket of the intake camshaft. This system controls the intake camshaft to provide the optimal valve timing. The PCM controls the Oil Control Valve(OCV), based on the signals output from mass air flow, throttle position and engine coolant temperature. The CVVT controller regulates the intake camshaft angle using oil pressure through the OCV. As result, the relative position between the camshaft and the crankshaft becomes optimal, and the engine torque improves, fuel economy improves, exhaust emissions decrease under overall driving conditions.

DTC DESCRIPTION E79DC16A


PCM monitors CAM phaser error while CMP signal is normally generating and vehicle is driving in 2000 ~ 3000rpm .If the CAM phaser does not move although PCM commands OCV duty cycle PCM determines that a faultexists and a DTC is stored.

DTC DETECTING CONDITION F7959093

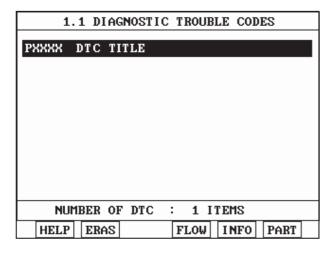

Ite	em	Detecting Condition	Possible cause
DTC Strategy		Determines if the phaser is stuck or has steady-state error	
Enable C	onditions	 CAM signal is normally generating Engine running (2000 ~ 3000RPM) for 5 minutes. 	
Thresh	Case 1	5 CAD < Cam Actual Position < 50 CADDuty Cycle > 90% or Duty Cycle < 10%	Engine OilOCV stuck
old value	Case 2	 Cam Position error > 15 CAD(Difference between Actual Postion and Desired Position is more than 15°) Timing Counter > 80 	CVVT stuck
Diagnos	sis Time	Continuous (within 5min.)	
MIL On 0	Condition	2 Driving Cycles	

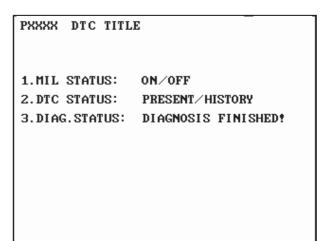
FL -84 FUEL SYSTEM

SCHEMATIC DIAGRAM EADBC3D0

SIGNAL WAVEFORM AND DATA E6E0A965

This example shows a typical Crankshaft Position Sensor (CKPS) and Camshaft Position Sensor (CMPS) waveform at idle. If the 17th signal of the CKPS after missing tooth is aligned with the high signal of the CMPS at idle, ECM recognizes that Synchronization between CKPS and CMPS is completed.


SBLF26724L


MONITOR DTC STATUS E37FA2D9

- Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".

FL -85

- 3) Select ""Diagnostic Trouble Codes(DTCs)"" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu.
- 4) Read "DTC Status" parameter.

SGHFL7305L

5) Is "Present" Fault displayed?

YES

Go to "System Inspection" procedure.

NO

Fault is intermittent caused by PCM memory was not cleared after repair. Erase DTC and drive the vehicle to satisfy the enable condition then, go to "System Inspection" procedure.

SYSTEM INSPECTION E0126B9D

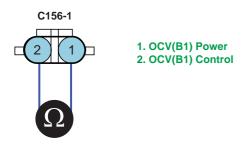
- Visual Inspection
 - 1) Check oil level is O.K.
 - 2) Check for contamination of engine oil and OCV
 - 3) Has a problem been found?

YES

Repair or replace as necessary and then, go to "Verification of Vehicle Repair" procedure.

NO

Go to "Component Inspection" procedure.


COMPONENT INSPECTION FR65DDC4

- Check OCV resistance
 - 1) IG "OFF" and disconnect OCV connector.
 - Measure resistance between terminal 1 and 2 of OCV. (Component Side)

FL -86 FUEL SYSTEM

SPECIFICATION:

Resistance () 6.7 ~ 7.7

SBLF26400L

3) Is the measured resistance within specification?

YES

Go to "Check CAM PHASER with actuation test" as follows.

NO

Substitute with a known - good OCV and check for proper operation.

If the problem is corrected, replace OCV and go to "Verification of Vehicle Repair" procedure.

- 2. Check CAM PHASER with actuation test
 - 1) Connect scantool and IG "ON"
 - 2) Select "CAM PHASER INTAKE BANK 1" on the Actuation Test
 - 3) Select "OIL CONTROL VALVE" on the Actuation Test
 - 4) Activates "CAM PHASER INTAKE BANK 1" by pressing "STRT(F1)" key
 - 5) Activates "OIL CONTROL VALVE" by pressing "STRT(F1)" key
 - 6) Repeat this procedure 4 or 5 times to ensure CAM PHASER and intake valve control solenoid reliability

1.	.4 ACTUATION TEST 24/	′29
CAM PHASER	INTAKE BANK 1	
DURAT I ON	UNTIL STOP KEY	
METHOD	ACTIVATION	
CONDITION	IG. KEY ON	
	ENGINE RUNNING	
PRESS [ST	TRT], IF YOU ARE READY !	
SELECT TES	ST ITEM USING UP/DOWN KEY	!
STRT STO	P	

OIL CONTRO	L VALVE
DURAT I ON	UNTIL STOP KEY
METHOD	ACTIVATION
CONDITION	IG.KEY ON ENGINE OFF
	TRT1, IF YOU ARE READY !

SEPFL6403N

7) Has a problem been found?

FL -87

YES

Substitute with a known - good CVVT or OCV and check for proper operation.

If the problem is corrected, replace CVVT or OCV and go to "Verification of Vehicle Repair" procedure.

Fault is intermittent. Drive the vehicle to meet the enable condition for the DTC. and Go to "Verification of Vehicle Repair" procedure.

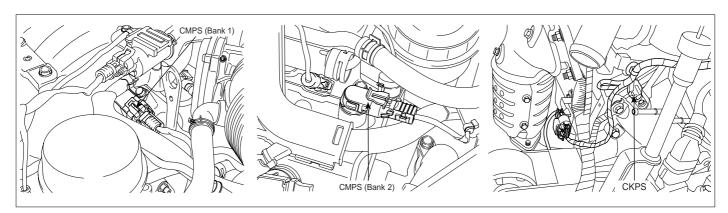
VERIFICATION OF VEHICLE REPAIR E811947D

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

YES

System performing to specification at this time. Clear the DTC


NO

Go to the applicable troubleshooting procedure.

FL -88 FUEL SYSTEM

DTC P0016 CRANKSHAFT POSITION-CAMSHAFT POSITION CORRELATION (BANK 1 SENSOR A)

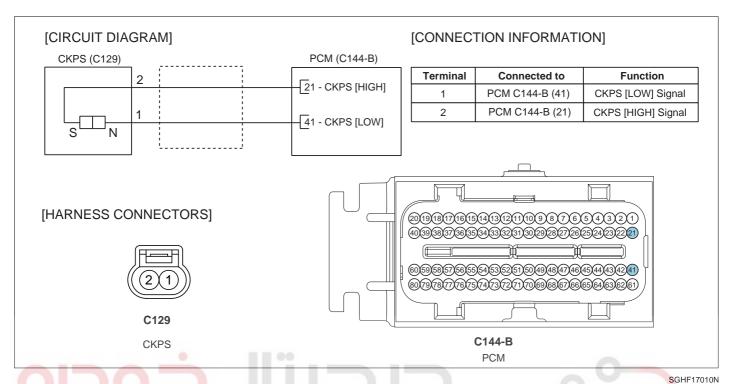
COMPONENT LOCATION ECB9C7D6

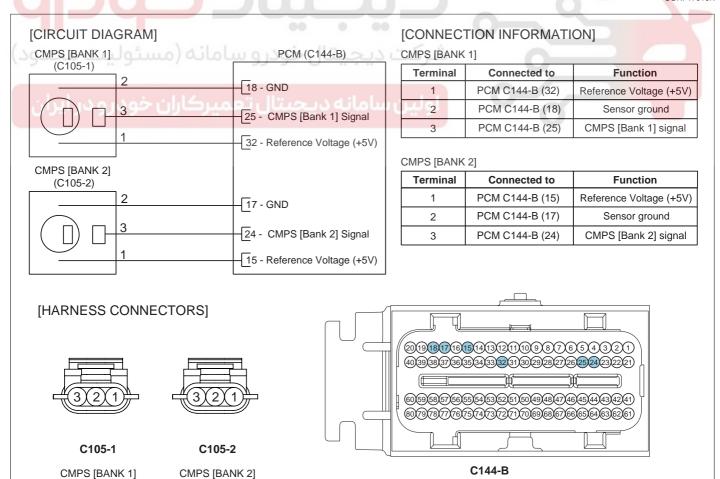
SGHFL7309N

GENERAL DESCRIPTION E7CC0422

The CVVT (Continuously Variable Valve Timing) system is installed to the chain sprocket of the intake camshaft. This system controls the intake camshaft to provide the optimal valve timing. The PCM controls the Oil Control Valve(OCV), based on the signals output from mass air flow, throttle position and engine coolant temperature. The CVVT controller regulates the intake camshaft angle using oil pressure through the OCV. As result, the relative position between the camshaft and the crankshaft becomes optimal, and the engine torque improves, fuel economy improves, exhaust emissions decrease under overall driving conditions.

DTC DESCRIPTION EDE59201

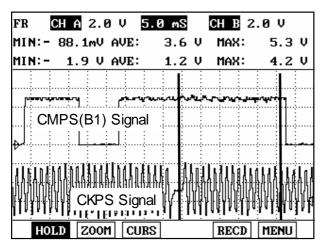

PCM monitors timing misalignment while no active faults are present and fully warmed up engine oil at idle. If the timing is misaligned PCM determines that a fault exists and a DTC is stored.


DTC DETECTING CONDITION E3934940

Ite	em	Detecting Condition	Possible cause
DTC S	trategy	Determines if CAM target is aligned correctly to crank	
Enable C	onditions	No active faultsFully warmed up at idle	
Thresh	Case 1	• 1 teeth misalignment at 80 (176) < Oil Temperature < 90 (194)	Loosened CKPSTiming Misalignment
old value	Case 2	• 2 tooth misalignment at Lower than 80 (176) or Higher than 90 (194)	• Tilling Misangilinent
Diagnos	sis Time	Continuous (Within 1min.)	
MIL On (Condition	2 driving Cycles	

FL -89

SCHEMATIC DIAGRAM E

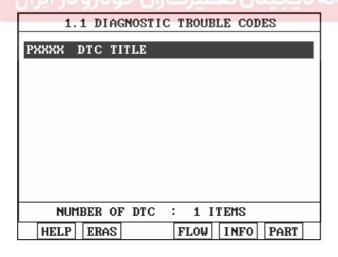


PCM

UFBG244A

FL -90 FUEL SYSTEM

SIGNAL WAVEFORM AND DATA E009A



This example shows a typical Crankshaft Position Sensor (CKPS) and Camshaft Position Sensor (CMPS) waveform at idle. If the 17th signal of the CKPS after missing tooth is aligned with the high signal of the CMPS at idle, ECM recognizes that Synchronization between CKPS and CMPS is completed.

SBLF26726L

MONITOR DTC STATUS E6F279

- 1. Check DTC Status
 - Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - Select ""Diagnostic Trouble Codes(DTCs)"" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu.
 - 4) Read "DTC Status" parameter.

PXXXX DTC TITLE

1.MIL STATUS: ON/OFF
2.DTC STATUS: PRESENT/HISTORY
3.DIAG.STATUS: DIAGNOSIS FINISHED!

SGHFL7305L

5) Is "Present" Fault displayed?

YES

Go to "System Inspection" procedure.

NO

Fault is intermittent caused by PCM memory was not cleared after repair. Erase DTC and drive the vehicle to satisfy the enable condition then, go to "System Inspection" procedure.

FL -91

SYSTEM INSPECTION E6856EF5

- 1. Visual Inspection
 - 1) Check oil level is O.K.
 - 2) Check for contamination of engine oil and OCV
 - 3) Has a problem been found?

Repair or replace as necessary and then, go to "Verification of Vehicle Repair" procedure.

Go to "Visually check CKPS and target wheel" as follows.

- 2. Visually check CKPS and target wheel
 - 1) IG "OFF"
 - 2) Visually check CKPS is loosened or target wheel is deformed or damaged.
 - 3) Are normal conditions present?

Go to "Check CAM PHASER with actuation test" as follows.

NO

Repair or replace as necessary and then go to "Verification of Vehicle Repair" procedure.

- 3. Check CAM PHASER with actuation test
 - 1) Connect scantool and IG "ON"
 - 2) Select "CAM PHASER INTAKE BANK 1" on the Actuation Test
 - 3) Select "OIL CONTROL VALVE" on the Actuation Test
 - 4) Activates "CAM PHASER INTAKE BANK 1" by pressing "STRT(F1)" key
 - 5) Activates "OIL CONTROL VALVE" by pressing "STRT(F1)" key
 - 6) Repeat this procedure 4 or 5 times to ensure CAM PHASER and intake valve control solenoid reliability

FL -92 FUEL SYSTEM

1	.4 ACTUATION TEST	24/29
CAM PHASER	INTAKE BANK 1	
DURATION	UNTIL STOP KEY	
METHOD	ACTIVATION	
CONDITION	IG. KEY ON	
	ENGINE RUNNING	
PRESS [S]	[RT], IF YOU ARE REA	DY !
SELECT TE	ST ITEM USING UP/DOW	N KEY
STRT STO	P	

OIL CONTRO	L VALVE
DURAT I ON	UNTIL STOP KEY
METHOD	ACTIVATION
CONDITION	IG.KEY ON ENGINE OFF
	TRT1, IF YOU ARE READY !

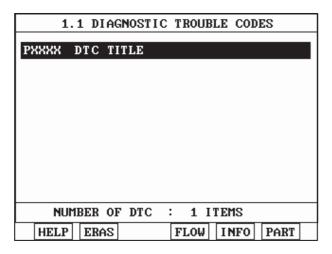
SEPFL6403N

7) Has a problem been found?

YES

Substitute with a known - good CVVT or OCV and check for proper operation.

If the problem is corrected, replace CVVT or OCV and go to "Verification of Vehicle Repair" procedure.


NO

Fault is intermittent. Drive the vehicle to meet the enable condition for the DTC. and Go to "Component Inspection" procedure.

COMPONENT INSPECTION E879E7CE

- 1. CMPS, CKPS Inspection
 - 1) IG "OFF" and connect scantool.
 - 2) ENG "ON" and Measure signal waveform at terminal 3 of CMPS.
 - 3) Measure signal waveform at terminal 1 or 2 of CKPS.

Specification: 17th signal of the CKPS after missing tooth is aligned with the high signal of the CMPS at idle, PCM recognizes that Synchronization between CKPS and CMPS is completed.

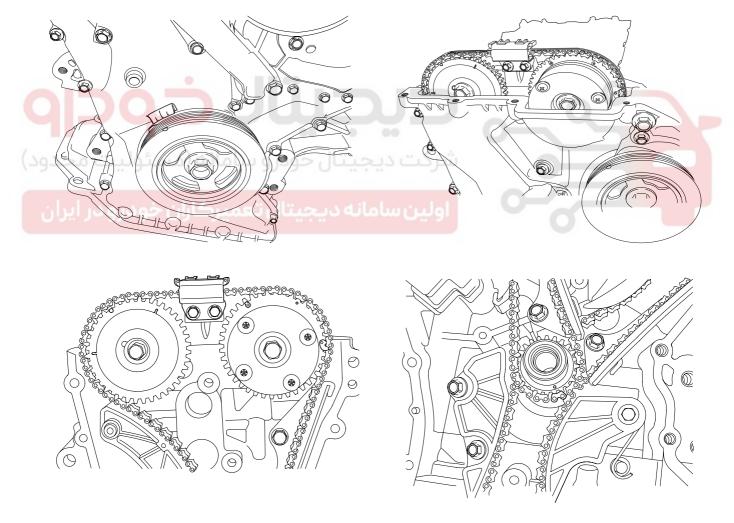
1.MIL STATUS: ON/OFF
2.DTC STATUS: PRESENT/HISTORY
3.DIAG.STATUS: DIAGNOSIS FINISHED!

PXXXX DTC TITLE

SGHFL7305L

FL -93

4) Is the measured signal waveform O.K?


Fault is intermittent. Drive the vehicle to meet the enable condition for the DTC. and Go to "Verification of Vehicle Repair" procedure.

Go to "Timing Mark Inspection" procedure as follows.

- 2. Timing Mark Inspection.
 - 1) IG "OFF" and check for correct timing mark alignment.

REFERENCE:

KGRF305C

2) Is the timing mark correctly aligned?

Fault is intermittent. Drive the vehicle to meet the enable condition for the DTC. and Go to "Verification of Vehicle Repair" procedure.

FL -94 FUEL SYSTEM

Repair or replace as necessary and then, go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR E2A8A1DD

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC

NO

Go to the applicable troubleshooting procedure.

شرکت دیجیتال خودرو سامانه (مسئولیت محدود)

ولین سامانه دیجیتال تعمیرکاران خودرو در ایران

FL -95

DTC P0018 CRANKSHAFT POSITION-CAMSHAFT POSITION CORRELATION (BANK 2 SENSOR A)

COMPONENT LOCATION E277EA10

Refer to DTC P0016.

GENERAL DESCRIPTION E0422B7D

Refer to DTC P0016.

DTC DESCRIPTION E2B30826

PCM monitors timing misalignment while no active faults are present and fully warmed up engine oil at idle. If the timing is misaligned PCM determines that a fault exists and a DTC is stored.

DTC DETECTING CONDITION EEAE9896

Ite	m	Detecting Condition	Possible cause
DTC S	trategy	Determines if CAM target is aligned correctly to crank	
Enable Conditions		No active faults Fully warmed up at idle	
Thresh	Case 1	• 1 teeth misalignment at 80 (176) < Oil Temperature < 90 (194)	Loosened CKPSTiming Misalignment
old value	Case 2	• 2 tooth misalignment at Lower than 80 (176) or Higher than 90 (194)	• Timing Misangriment
Diagnosis Time		Continuous (Within 1min.)	
MIL On 0	Condition	2 driving Cycles	

SCHEMATIC DIAGRAM E8ED682F

Refer to DTC P0016.

SIGNAL WAVEFORM AND DATA E98C4157

Refer to DTC P0016.

MONITOR DTC STATUS EA80C85E

Refer to DTC P0016.

SYSTEM INSPECTION EBD5D4A2

- 1. Visual Inspection
 - 1) Check oil level is O.K.
 - 2) Check for contamination of engine oil and OCV
 - 3) Has a problem been found?

FL -96 FUEL SYSTEM

YES

Repair or replace as necessary and then, go to "Verification of Vehicle Repair" procedure.

NO

Go to "Visually check CKPS and target wheel" as follows.

- 2. Visually check CKPS and target wheel
 - 1) IG "OFF"
 - 2) Visually check CKPS is loosened or target wheel is deformed or damaged.
 - 3) Are normal conditions present?

Go to "Check CAM PHASER with actuation test" as follows.

NO

Repair or replace as necessary and then go to "Verification of Vehicle Repair" procedure.

- Check CAM PHASER with actuation test
 - Connect scantool and IG "ON"
 - 2) Select "CAM PHASER INTAKE BANK 1" on the Actuation Test
 - 3) Select "OIL CONTROL VALVE" on the Actuation Test
 - 4) Activates "CAM PHASER INTAKE BANK 1" by pressing "STRT(F1)" key
 - 5) Activates "OIL CONTROL VALVE" by pressing "STRT(F1)" key
 - 6) Repeat this procedure 4 or 5 times to ensure CAM PHASER and intake valve control solenoid reliability

1	.4 ACTUATION TEST 24/29
CAM PHASER	INTAKE BANK 2
DURAT I ON	UNTIL STOP KEY
METHOD	ACTIVATION
CONDITION	IG. KEY ON
	ENGINE BUNNING
PRESS [S]	TRT], IF YOU ARE READY !
SELECT TE	ST ITEM USING UP/DOWN KEY
STRT STO	P

OIL CONTRO	L VALVE
DURAT I ON	UNTIL STOP KEY
METHOD	ACTIVATION
CONDITION	IG.KEY ON ENGINE OFF
	TRT1, IF YOU ARE READY !

SEPFL6407N

7) Has a problem been found?

Substitute with a known - good CVVT or OCV and check for proper operation.

If the problem is corrected, replace CVVT or OCV and go to "Verification of Vehicle Repair" procedure.

FL -97

Fault is intermittent. Drive the vehicle to meet the enable condition for the DTC. and Go to "Component Inspection" procedure.

COMPONENT INSPECTION E7C9C8D8

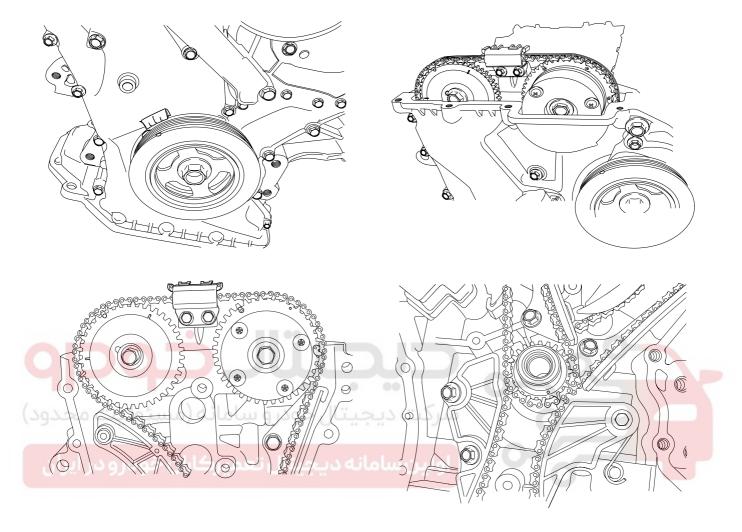
- 1. CMPS, CKPS Inspection
 - 1) IG "OFF" and connect scantool.
 - 2) ENG "ON" and Measure signal waveform at terminal 3 of CMPS.
 - 3) Measure signal waveform at terminal 1 or 2 of CKPS.

Specification: 17th signal of the CKPS after missing tooth is aligned with the high signal of the CMPS at idle, PCM recognizes that Synchronization between CKPS and CMPS is completed.

SGHFL7305L

4) Is the measured signal waveform O.K?

Fault is intermittent. Drive the vehicle to meet the enable condition for the DTC. and Go to "Verification of Vehicle Repair" procedure.



Go to "Timing Mark Inspection" procedure as follows.

- 2. Timing Mark Inspection.
 - 1) IG "OFF" and check for correct timing mark alignment.

FL -98 FUEL SYSTEM

REFERENCE:

KGRF305C

2) Is the timing mark correctly aligned?

YES

Fault is intermittent. Drive the vehicle to meet the enable condition for the DTC. and Go to "Verification of Vehicle Repair" procedure.

NO

Repair or replace as necessary and then, go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR EC5E3E81

Refer to DTC P0016.

FL -99

DTC P0022 "A" CAMSHAFT POSITION-TIMING OVER-RETARDED (BANK 2)

COMPONENT LOCATION E8423ECE

Refer to DTC P0012.

GENERAL DESCRIPTION E5F29B7D

Refer to DTC P0012.

DTC DESCRIPTION E35DEC3A

PCM monitors CAM phaser error while CMP signal is normally generating and vehicle is driving in 2000 ~ 3000rpm .If the CAM phaser does not move although PCM commands OCV duty cycle PCM determines that a faultexists and a DTC is stored.

DTC DETECTING CONDITION EE2C0190

Ite	em	Detecting Condition	Possible cause
DTC S	trategy	Determines if the phaser is stuck or has steady-state error	0
Enable C	onditions	 CAM signal is normally generating Vehicle is on driving (2000 ~ 3000RPM) for 5 minutes 	
Thresh	Case 1	 5 CAD < Cam Actual Position < 50 CAD Duty Cycle > 90% or Duty Cycle < 10% 	Engine OilOCV stuck
old value	Case 2	 Cam Position error > 15 CAD (Difference between Actual Postion and Desired Position is more than 15°) Timing Counter > 80 	CVVT stuck
Diagnos	sis Time	Continuous (within 5min.)	
MIL On (Condition	2 Driving Cycles	

SCHEMATIC DIAGRAM EFA29B4E

Refer to DTC P0012.

SIGNAL WAVEFORM AND DATA E103B9AE

Refer to DTC P0012.

MONITOR DTC STATUS EDCFAFOO

Refer to DTC P0012.

SYSTEM INSPECTION EBBC3C03

- 1. Visual Inspection
 - 1) Check oil level is O.K.
 - 2) Check for contamination of engine oil and OCV.

FL -100 FUEL SYSTEM

3) Has a problem been found?

Repair or replace as necessary and then, go to "Verification of Vehicle Repair" procedure.

Go to "Component Inspection" procedure.

COMPONENT INSPECTION E7940815

- Check OCV resistance
 - 1) IG "OFF" and disconnect OCV connector.
 - 2) Measure resistance between terminal 1 and 2 of OCV. (Component Side)

SPECIFICATION:

3) Is the measured resistance within specification?

YES

Go to "Check CAM PHASER with actuation test" as follows.

NO

Substitute with a known - good OCV and check for proper operation.

If the problem is corrected, replace OCV and go to "Verification of Vehicle Repair" procedure.

- 2. Check CAM PHASER with actuation test
 - Connect scantool and IG "ON"
 - 2) Select "CAM PHASER INTAKE BANK 2" on the Actuation Test
 - 3) Select "OIL CONTROL VALVE" on the Actuation Test
 - 4) Activates "CAM PHASER INTAKE BANK 2" by pressing "STRT(F1)" key
 - 5) Activates "OIL CONTROL VALVE" by pressing "STRT(F1)" key
 - Repeat this procedure 4 or 5 times to ensure CAM PHASER and intake valve control solenoid reliability

FL -101

1.	4 ACTUATION TEST 24/29
CAM PHASER	INTAKE BANK 2
DURAT I ON	UNTIL STOP KEY
METHOD	ACTIVATION
CONDITION	IG. KEY ON
	ENGINE RUNNING
PRESS [ST	RT1, IF YOU ARE READY !
SELECT TE	ST ITEM USING UP/DOWN KEY
STRT STO	P

OIL CONTRO	L VALVE
DURAT I ON	UNTIL STOP KEY
METHOD	ACTIVATION
CONDITION	IG.KEY ON ENGINE OFF
	TRT1, IF YOU ARE READY !

SEPFL6407N

7) Has a problem been found?

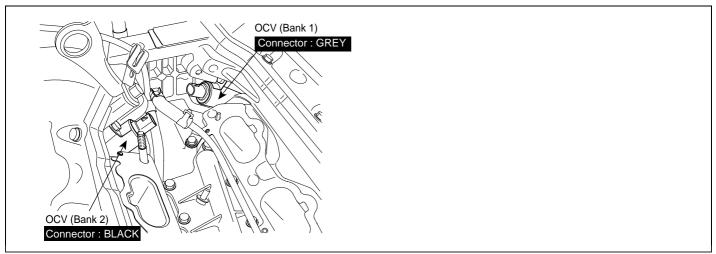
YES

Substitute with a known - good CVVT or OCV and check for proper operation.

If the problem is corrected, replace CVVT or OCV and go to "Verification of Vehicle Repair" procedure.

NO

Fault is intermittent. Drive the vehicle to meet the enable condition for the DTC. and Go to "Verification of Vehicle Repair" procedure.


VERIFICATION OF VEHICLE REPAIR E5E62B89

Refer to DTC P0012.

FL -102 FUEL SYSTEM

DTC P0026 INTAKE VALVE CONTROL SOLENOID CIRCUIT RANGE/PERFORMANCE (BANK 1)

COMPONENT LOCATION E52DE2D4

EGRF600A

GENERAL DESCRIPTION E4D85FEF

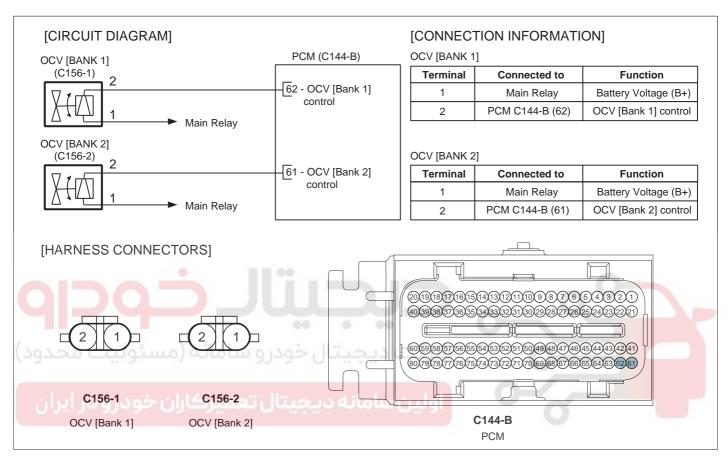
The CVVT (Continuously Variable Valve Timing) system is installed to the chain sprocket of the intake camshaft. This system controls the intake camshaft to provide the optimal valve timing. The PCM controls the Oil Control Valve(OCV), based on the signals output from mass air flow, throttle position and engine coolant temperature. The CVVT controller regulates the intake camshaft angle using oil pressure through the OCV. As result, the relative position between the camshaft and the crankshaft becomes optimal, and the engine torque improves, fuel economy improves, exhaust emissions decrease under overall driving conditions.

DTC DESCRIPTION EE997295

PCM monitors OCV stuck while cam signal is normally generating and Valve cleaning is not in progress. If the CAM Acutal Position is too high or low and Difference between Cam Actual Position and Desired Position is higher than 20° PCM determines that a fault exists and a DTC is stored.

DTC DETECTING CONDITION E301107D

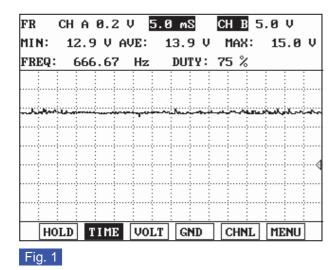
Ite	em	Detecting Condition	Possible cause
DTC S	trategy	Determines if oil control valve is stuck	
Enable Conditions		Valve cleaning not in progressCAM signal is normally generating	
Thresh	Case 1	 Cam Actual Position > 50 CAD or Difference between CAM Actual Position and Desired Position > 20 CAD 	Oil Pressure Loss OCV esigner
old value	Case 2	Cam Actual Position < 5 CAD or Difference between CAM Actual Position and Desired Position > 20 CAD	OCV seizure
Diagnosis Time		Continuous (Within 1min.)	
MIL On (Condition	2 driving Cycle	


FL -103

SPECIFICATION

E61519D6

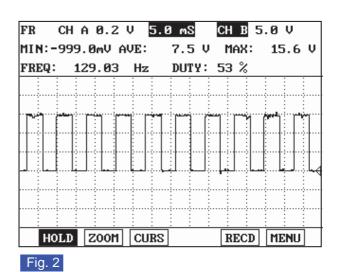
Resistance ()	6.7 ~ 7.7
----------------	-----------

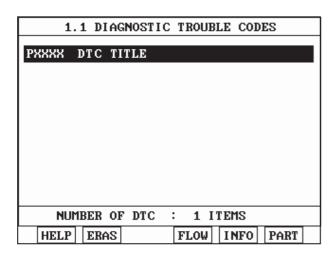

SCHEMATIC DIAGRAM EE1CA544

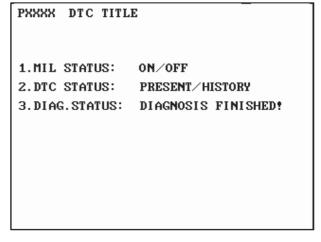
UFBG255A

FL -104 **FUEL SYSTEM**

SIGNAL WAVEFORM AND DATA E6F494D4




Fig. 1: Idle - normal Condition


Fig. 2: Acceleration

EGRF600T

MONITOR DTC STATUS E007D5DF

- Check DTC Status 1.
 - Connect scantool to Data Link Connector(DLC).
 - IG "ON". 2)
 - Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu.
 - Read "DTC Status" parameter.

SGHFL7305L

Is "Present" Fault displayed?

Go to "Terminal and Connector inspection" procedure.

FL -105

NO

Fault is intermittent caused by PCM memory was not cleared after repair. Erase DTC and drive the vehicle to satisfy the enable condition then, go to "System Inspection" procedure.

TERMINAL AND CONNECTOR INSPECTION ECC75C9F

- 1. Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- 2. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

Repair as necessary and go to "Verification of Vehicle Repair" procedure

NO

Go to " Power Circuit Inspection " as follow

POWER CIRCUIT INSPECTION

EB4A963E

- 1. IG "OFF" and disconnect OCV connector.
- 2. IG "ON" & ENG "OFF".
- 3. Measure voltage between terminal 1 of OCV harness connector and chassis ground.

NOTE

Be careful not to change the connectors for B1 and B2

Specification: B+

4. Is the measured voltage within specification?

YES

Go to "Control Circuit Inspection "procedure.

NO

Check that Fuse between Main Relay and OCV is open.

Check open between main relay and OCV.

Check short to ground between Main Relay and OCV.

Repair or replace as necessay go to "Verification of Vehicle Repair " procedure.

CONTROL CIRCUIT INSPECTION ERTECRER

- 1. IG "OFF" and disconnect OCV connector.
- 2. IG "ON" & ENG "OFF".
- Measure voltage between terminal 2 of OCV harness connector and chassis ground.

FL -106 FUEL SYSTEM

Specification: Approx. below 1V

4. Is the measured voltage within specification?

Go to "System Inspection" procedure.

Repair or replace as necessary and then go to "Verification of Vehicle Repair" procedure.

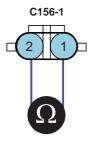
SYSTEM INSPECTION E649395

- 1. Visual Inspection
 - 1) Check oil level is O.K.
 - 2) Check oil is contaminated.
 - 3) Check that any oil leakage is occurred around CVVT system.
 - 4) Has a problem been found?

YES

Repair or replace as necessary and then, go to "Verification of Vehicle Repair" procedure.

NO


Go to "Component Inspection" procedure

COMPONENT INSPECTION EFA8812E

- 1. OCV Inspection
 - 1) IG "OFF" & Disconnect OCV connector.
 - 2) Measure resistance between terminal 1 and 2 of OCV connector (Component Side)

SPECIFICATION:

Resistance ()	6.7 ~ 7.7
resistance ()	j

1. OCV(B1) Power 2. OCV(B1) Control

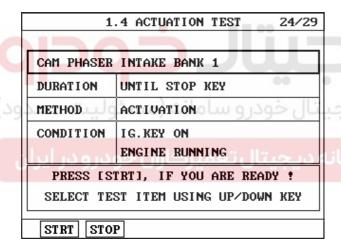
3) Is the measured resistance within specification?

WWW.DIGITALKHODRO.COM

021 62 99 92 92

SBLF26400L

FL -107


YES

Go to "Check CAM PHASER with actuation test" as follows.

NO

Substitute with a known - good OCV and check for proper operation. If the problem is corrected, replace OCV and go to "Verification of Vehicle Repair" procedure.

- 2. Check CAM PHASER with actuation test
 - 1) Connect scantool and IG "ON"
 - 2) Select "CAM PHASER INTAKE BANK 1" on the Actuation Test
 - 3) Select "OIL CONTROL VALVE" on the Actuation Test
 - 4) Activates "CAM PHASER INTAKE BANK 1" by pressing "STRT(F1)" key
 - 5) Activates "OIL CONTROL VALVE" by pressing "STRT(F1)" key
 - 6) Repeat this procedure 4 or 5 times to ensure CAM PHASER and intake valve control solenoid reliability

OIL CONTRO	L VALVE
DURAT I ON	UNTIL STOP KEY
METHOD	ACTIVATION
CONDITION	IG.KEY ON ENGINE OFF
	TRT], IF YOU ARE READY ! ST ITEM USING UP/DOWN KEY

SEPFL6403N

7) Has a problem been found?

YES

Substitute with a known - good CVVT or OCV and check for proper operation.

If the problem is corrected, replace CVVT or OCV and go to "Verification of Vehicle Repair" procedure.

NO

Fault is intermittent. Drive the vehicle to meet the enable condition for the DTC. and Go to "Verification of Vehicle Repair" procedure

VERIFICATION OF VEHICLE REPAIR E66D8DE0

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions

FL -108 FUEL SYSTEM

- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC

Go to the applicable troubleshooting procedure.

FL -109

DTC P0028 INTAKE VALVE CONTROL SOLENOID CIRCUIT RANGE/PERFORMANCE (BANK 2)

COMPONENT LOCATION E4222333

Refer to DTC P0026.

GENERAL DESCRIPTION E8F4395C

Refer to DTC P0026.

DTC DESCRIPTION E97F5C3E

PCM monitors OCV stuck while cam signal is normally generating and Valve cleaning is not in progress .If the CAM Acutal Position is too high or low and Difference between Cam Actual Positionand Desired Position is higher than 20° PCM determines that a fault exists and a DTC is stored.

DTC DETECTING CONDITION E3851CEC

Item		Detecting Condition	Possible cause
DTC Strategy		Determines if oil control valve is stuck	- 0-
Enable Conditions		Valve cleaning not in progressCAM signal is normally generating	
Thresh	Case 1	Cam Actual Position > 50 CAD or Difference between CAM Actual Position and Desired Position > 20 CAD	Oil Pressure OCV egizure
old value	Case 2	Cam Actual Position < 5 CAD or Difference between CAM Actual Position and Desired Position > 20 CAD	OCV seizure
Diagnosis Time		Continuous (Within 1min.)	
MIL On Condition		2 driving Cycle	

SPECIFICATION E21726C5

Resistance ()	6.7 ~ 7.7
----------------	-----------

SCHEMATIC DIAGRAM E06A13FA

Refer to DTC P0026.

SIGNAL WAVEFORM AND DATA EADCC187

Refer to DTC P0026.

MONITOR DTC STATUS EEBA4B24

Refer to DTC P0026.

FL -110 FUEL SYSTEM

TERMINAL AND CONNECTOR INSPECTION E6A1125C

Refer to DTC P0026.

POWER CIRCUIT INSPECTION E62B9A4

- 1. IG "OFF" and disconnect OCV connector.
- 2. IG "ON" & ENG "OFF".
- Measure voltage between terminal 1 of OCV harness connector and chassis ground.

Be careful not to change the connectors for B1 and B2

Specification: B+

4. Is the measured voltage within specification ?

Go to " Control Circuit Inspection " procedure.

NO

Check that Fuse between Main Relay and OCV is open.

Check open between main relay and OCV.

Check short to ground between Main Relay and OCV.

Repair or replace as necessay go to "Verification of Vehicle Repair " procedure.

CONTROL CIRCUIT INSPECTION ED85005B

- 1. IG "OFF" and disconnect OCV connector.
- 2. IG "ON" & ENG "OFF".
- 3. Measure voltage between terminal 2 of OCV harness connector and chassis ground.

Specification: Approx. below 1V

4. Is the measured voltage within specification?

YES

Go to "System Inspection" procedure.

NO

Repair or replace as necessary and then go to "Verification of Vehicle Repair" procedure.

SYSTEM INSPECTION E34DD61D

- Visual Inspection
 - 1) Check oil level is O.K.

FL -111

- 2) Check oil is contaminated.
- 3) Check that any oil leakage is occurred around CVVT system.
- 4) Has a problem been found?

Repair or replace as necessary and then, go to "Verification of Vehicle Repair" procedure.

Go to "Component Inspection" procedure

COMPONENT INSPECTION EF2DB15E

- 1. OCV Inspection
 - 1) IG "OFF" & Disconnect OCV connector.
 - 2) Measure resistance between terminal 1 and 2 of OCV connector (Component Side)

SPECIFICATION:

SBLF26402L

3) Is the measured resistance within specification?

Go to "Check CAM PHASER with acuation test" as follows.

NO

Substitute with a known - good OCV and check for proper operation. If the problem is corrected, replace OCV and go to "Verification of Vehicle Repair" procedure.

- 2. Check CAM PHASER with actuation test
 - 1) Connect scantool and IG "ON"
 - 2) Select "CAM PHASER INTAKE BANK 2" on the Actuation Test
 - 3) Select "OIL CONTROL VALVE" on the Actuation Test
 - 4) Activates "CAM PHASER INTAKE BANK 2" by pressing "STRT(F1)" key
 - 5) Activates "OIL CONTROL VALVE" by pressing "STRT(F1)" key

FL -112 FUEL SYSTEM

6) Repeat this procedure 4 or 5 times to ensure CAM PHASER and intake valve control solenoid reliability

1.4 ACTUATION TEST 24/29			
CAM PHASER INTAKE BANK 2			
DURAT I ON	UNTIL STOP KEY		
METHOD	ACTIVATION		
CONDITION	IG. KEY ON		
	ENGINE RUNNING		
PRESS [STRT], IF YOU ARE READY !			
SELECT TEST ITEM USING UP/DOWN KEY			
STRT STOP			

OIL CONTRO	L VALVE	
DURAT I ON	UNTIL STOP KEY	
METHOD	ACTIVATION	
CONDITION	IG.KEY ON ENGINE OFF	
	TRT1, IF YOU ARE READY !	

SEPFL6407N

7) Has a problem been found?

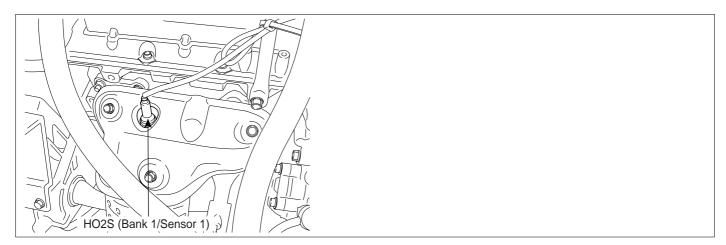
YES

Substitute with a known - good CVVT or OCV and check for proper operation.

If the problem is corrected, replace CVVT or OCV and go to "Verification of Vehicle Repair" procedure.

NO

Fault is intermittent. Drive the vehicle to meet the enable condition for the DTC. and Go to "Verification of Vehicle Repair" procedure.


VERIFICATION OF VEHICLE REPAIR EE2D5E84

Refer to DTC P0026.

FL -113

DTC P0030 HO2S HEATER CONTROL CIRCUIT (BANK 1 / SENSOR 1)

COMPONENT LOCATION E642DBBF

SGHFL7310N

GENERAL DESCRIPTION E6D104D9

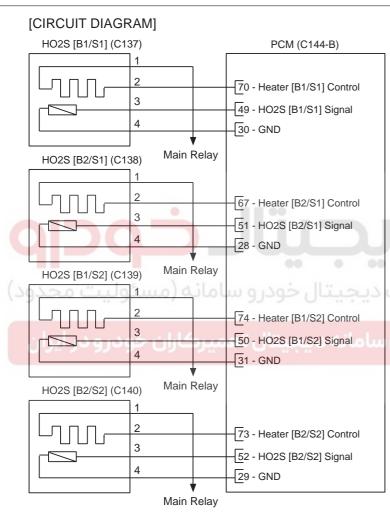
The normal operating temperature of the HO2S(Heated Oxygen Sensor) ranges from 350 to 850°C(662 to 1562°F). The HO2S heater greatly decreases the amount of time required for fuel control to become active. The PCM provides a pulse width modulated control circuit to adjust current through the heater. When the HO2S is cold, the value of the resistance is low and the current in the circuit is high. On the contrary, if the temperature in the resistor of the sensor rises, the current drops gradually.

DTC DESCRIPTION EDC0EA83

Checking current from HO2S under detecting condition, if the heater current is below a certain threshold for more than predetermined time, PCM sets P0030. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION E852268C

Item	Detecting Condition	Possible cause
DTC Strategy	Monitor the current through the heater	
Enable Conditions	 Engine Running > 60 sec. Heater Duty Cycle > 40% Max. Duty Cycle - Min. Duty Cycle < 5% 	Poor Connection
Threshold value	Filtered Heater Current < threshold value	HO2S(B1/S1)PCM
Diagnosis Time	Continuous (More than 2.5 second failure for every 5 second test)	
MIL On Condition	2 Driving Cycles	


FL -114 FUEL SYSTEM

SPECIFICATION

(REFERENCE ONLY)

Condition	Current(A)
Heater Current at 13.5V, 450 (842°F) Exhaust	0.52 ± 0.1

SCHEMATIC DIAGRAM E4AFFE3E

[CONNECTION INFORMATION] HO2S [B1/S1]

Terminal	Connected to	Function
1	Main Relay	Battery Voltage (B+)
2	PCM C144-B (70)	Heater [B1/S1] Control
3	PCM C144-B (49)	HO2S [B1/S1] Signal
4	PCM C144-B (30)	Sensor ground

HO2S [B2/S1]

Terminal	Connected to	Function	
1	Main Relay	Battery Voltage (B+)	
2	PCM C144-B (67)	Heater [B2/S1] Control	
3	PCM C144-B (51)	HO2S [B2/S1] Signal	
4	PCM C144-B (28)	Sensor ground	

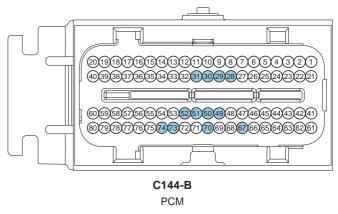
HO2S [B1/S2]

Terminal	Connected to	Function
1	Main Relay	Battery Voltage (B+)
2	PCM C144-B (74)	Heater [B1/S2] Control
3	PCM C144-B (50)	HO2S [B1/S2] Signal
4	PCM C144-B (31)	Sensor ground

HO2S [B2/S2]

Terminal	Connected to	Function
1	Main Relay	Battery Voltage (B+)
2	PCM C144-B (73)	Heater [B2/S2] Control
3	PCM C144-B (52)	HO2S [B2/S2] Signal
4	PCM C144-B (29)	Sensor ground

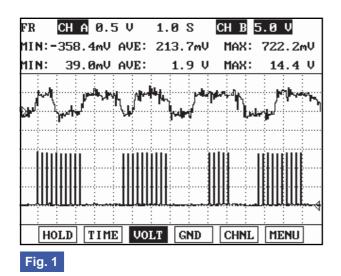
[HARNESS CONNECTORS]


C137,C138,C139,C140

HO2S [Bank 1/Sensor 1]

HO2S [Bank 2/Sensor 1]

HO2S [Bank 1/Sensor 2]


HO2S [Bank 2/Sensor 2]

UFBG250B

FL -115

SIGNAL WAVEFORM AND DATA E5DO

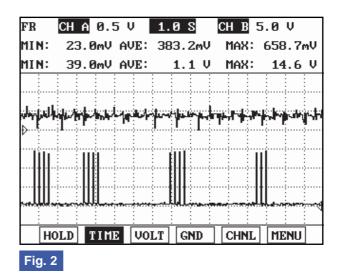
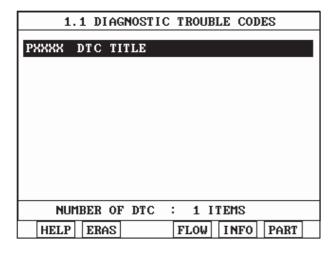


Fig. 1: The signal waveforms of front HO2S(the upper) and heater(the lower) at idle


Fig. 2: The signal waveforms of rear HO2S(the upper) and heater(the lower) at idle

SEPFL6412N

The HO2S requires a minimum temperature to provide a closed loop fuel control system. So the HO2S contains a heater element to reduce its warm-up time and ensure its performance during all driving conditions. The PCM controls this heater element by duty cycle. The main relay supplies voltage to the heater and the PCM provides a ground circuit for activating the heater.

MONITOR DTC STATUS ED8E5DEC

- 1. Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu.
 - 4) Read "DTC Status" parameter.

PXXXX DTC TITLE

1.MIL STATUS: ON/OFF
2.DTC STATUS: PRESENT/HISTORY
3.DIAG.STATUS: DIAGNOSIS FINISHED!

SGHFL7305L

5) Is "Present" Fault displayed?

FL -116 FUEL SYSTEM

YES

Go to "Terminal and connector inspection" procedure.

NO

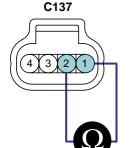
Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

TERMINAL AND CONNECTOR INSPECTION E02523F

- 1. Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

Repair as necessary and go to "Verification of Vehicle Repair" procedure


NO

Go to " Component Inspection " procedure.

COMPONENT INSPECTION EA133A60

- 1. Check HO2S(B1/S1) Heater resistance
 - 1) IG "OFF" and disconnect HO2S(B1/S1) connector
 - 2) Measure resistance between terminal 1 and 2 of HO2S(B1/S1)(Component Side)

Specification: 8.1 ~ 11.1 at 21 (69.8)

- 1. Battery Voltage (B+)
- 2. Heater [B1/S1] Control
- 3. HO2S [B1/S1] Signal
- 4. Sensor ground

SBLF26415L

3) Is the measured resistance within specification?

YES

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

FL -117

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. Before or after testing PCM on the vehicle, use this function before reusing the PCM

Substitute with a known - good HO2S(B1/S1) and check for proper operation. If the problem is corrected, replace HO2S(B1/S1) and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR E40E30EA

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

YES

System performing to specification at this time. Clear the DTC

NO

Go to the applicable troubleshooting procedure.

اولین سامانه دیجیتال تعمیرکاران خودرو در ایرار

FL -118 FUEL SYSTEM

DTC P0031 HO2S HEATER CIRCUIT LOW (BANK 1 / SENSOR 1)

COMPONENT LOCATION E5C304E6

Refer to DTC P0030.

GENERAL DESCRIPTION E196821D

Refer to DTC P0030.

DTC DESCRIPTION E5BB7DEA

If the PCM detects short to ground or open in heater under detecting conditions, PCM sets P0031. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION E22D808F

Item	Detecting Condition	Possible cause
DTC Strategy	Detects a short to ground or open	
Enable Conditions	 No disabling Faults Present Engine Running 11V Ignition Voltage 16V 	Poor Connection Open in Power Circuit
Threshold value	short to ground or open circuit	Open or short to ground in control circuit
Diagnosis Time	Continuous (More than 5 seconds failure for every 10 seconds test)	• HO2S(B1/S1) • PCM
MIL On Condition	2 Driving Cycles	

SPECIFICATION E69B9B46

Heater			
Resistance () 8.1 ~ 11.1 at 21 (69.8)			

SCHEMATIC DIAGRAM E52977D7

Refer to DTC P0030.

SIGNAL WAVEFORM AND DATA E17EE66E

Refer to DTC P0030.

MONITOR DTC STATUS E3765785

Refer to DTC P0030.

TERMINAL AND CONNECTOR INSPECTION E77EF520

Refer to DTC P0030.

FL -119

POWER CIRCUIT INSPECTION

- 1. IG "OFF" & Disconnect HO2S(B1/S1) connector.
- 2. IG "ON" & ENG "OFF".
- 3. Measure voltage between terminal 1 of HO2S(B1/S1) harness connector and chassis ground.

Specification: B+

4. Is the measured voltage within specification?

Go to HO2S(B1/S1) heater "Control Circuit Inspection" procedure.

NO

Repair open or short to ground in HO2S(B1/S1) Heater power circuit then, go to "Verification of Vehicle Repair" procedure.

CONTROL CIRCUIT INSPECTION E773F253

- Check short to ground in harness.
 - 1) IG "OFF" and disconnect HO2S(B1/S1) connector.
 - 2) Measure resistance between terminal 2 of HO2S(B1/S1) harness connector and chassis ground.

Specification: Infinite

3) Is the measured resistance within specification?

YES

Go to HO2S(B1/S1) "Check Open in harness" as follows.

NO

Repair short to ground in HO2S (B1/S1) heater control circuit and go to "Verification of Vehicle Repair" procedure.

- 2. Check open in harness
 - 1) IG "OFF" and disconnect HO2S(B1/S1) and PCM connector.
 - Measure resistance between terminal 2 of HO2S(B1/S1) harness connector and terminal 49 of PCM harness connector(C144-B).

Specification: Approx. below 1

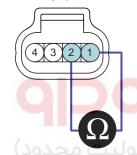
3) Is the measured resistance within specification?

YES

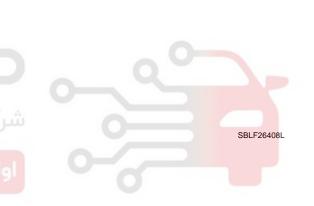
Go to HO2S(B1/S1) "Component Inspection" procedure.

FL -120 FUEL SYSTEM

Repair open in HO2S(B1/S1) heater control circuit and go to "Verification of Vehicle Repair" procedure.


COMPONENT INSPECTION E7810F8A

- 1. Check HO2S(B1/S1) Heater resistance.
 - 1) IG "OFF" and disconnect HO2S(B1/S1) connector.
 - Measure resistance between terminal 1 and 2 of HO2S(B1/S1)connector (Component Side)


SPECIFICATION:

Heater					
Resistance ()		8.1 ~ 11.1	at 21	(69.8)

- 1. HO2S(B1/S1) heater Power
- 2. HO2S(B1/S1) Heater Control
- 3. HO2S(B1/S1) Signal
- 4. Sensor ground

3) Is the measured resistance within specification?

YES

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM.

Before or after testing PCM on the vehicle, use this function before reusing the PCM.

Substitute with a known - good HO2S(B1/S1) and check for proper operation. If the problem is corrected, replace HO2S(B1/S1) and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR EB0D277D

Refer to DTC P0030.

FL -121

DTC P0032 HO2S HEATER CIRCUIT HIGH (BANK 1 / SENSOR 1)

COMPONENT LOCATION E04E7241

Refer to DTC P0030.

GENERAL DESCRIPTION E7480FDF

Refer to DTC P0030.

DTC DESCRIPTION EAFF2C05

If the PCM detects short to battery in heater under detecting conditions, PCM sets P0032. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION ED575B4F

Item	Detecting Condition	Possible cause
DTC Strategy	Detects a short to battery	
Enable Conditions	 No disabling Faults Present Engine Running 11V Ignition Voltage 16V 	 Poor Connection short to battery in control
Threshold value	short to battery	circuit
Diagnosis Time	 Continuous (More than 5 seconds failure for every 10 seconds test) 	• HO2S(B1/S1) • PCM
MIL On Condition	2 Driving Cycles	0

SPECIFICATION EC46734B

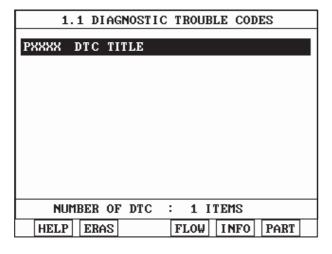
Heater		
Resistance ()	8.1 ~ 11.1 at 21 (69.8)	

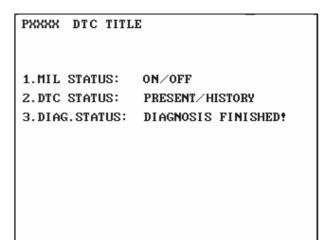
SCHEMATIC DIAGRAM EC521B3A

Refer to DTC P0030.

SIGNAL WAVEFORM AND DATA E7F621EF

Refer to DTC P0030.


MONITOR DTC STATUS E45CBD5E


- 1. Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".

FL -122 FUEL SYSTEM

3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu.

4) Read "DTC Status" parameter.

SGHFL7305L

5) Is "Present" Fault displayed?

YES

Go to "Terminal and connector inspection" procedure.

NO

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

TERMINAL AND CONNECTOR INSPECTION E592A3D5

Refer to DTC P0030.

CONTROL CIRCUIT INSPECTION ED873475

- 1. IG "OFF" & disconnect HO2S(B1/S1) connector.
- 2. IG "ON" & ENG "OFF".
- 3. Measure voltage between terminal 2 of HO2S(B1/S1) harness connector and chassis ground.

Specification: Approx. 0 V

4. Is the measured voltage within specification ?

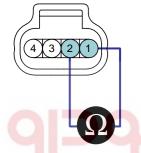
YES

Go to HO2S(B1/S1) "Component Inspection" procedure.

NO

FL -123

Repair short to battery in HO2S(B1/S1) Heater control circuit and go to "Verification of Vhicle Repair" procedure.


COMPONENT INSPECTION EBC.

- 1. Check HO2S(B1/S1) Heater resistance.
 - 1) IG "OFF" and disconnect HO2S(B1/S1) connector.
 - 2) Measure resistance between terminal 1 and 2 of HO2S(B1/S1)connector (Component Side)

SPECIFICATION:

Heater			
Resistance ()	8.1 ~ 11.1 at 21 (69.8)		

- 1. HO2S(B1/S1) heater Power
- 2. HO2S(B1/S1) Heater Control
- 3. HO2S(B1/S1) Signal
- 4. Sensor ground

SBLF26408L

3) Is the measured resistance within specification?

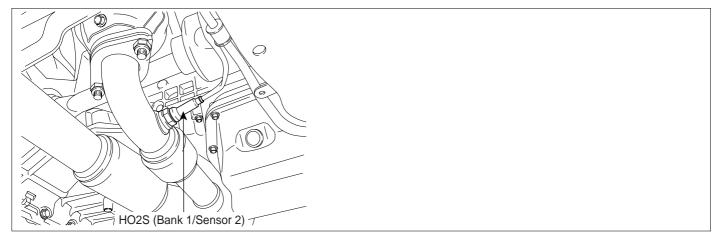
YES

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM.

Before or after testing PCM on the vehicle, use this function before reusing the PCM.

Substitute with a known - good HO2S(B1/S1) and check for proper operation. If the problem is corrected, replace HO2S(B1/S1) and go to "Verification of Vehicle Repair" procedure.


VERIFICATION OF VEHICLE REPAIR E022789B

Refer to DTC P0030.

FL -124 FUEL SYSTEM

DTC P0036 HO2S HEATER CONTROL CIRCUIT (BANK 1 / SENSOR 2)

COMPONENT LOCATION EEF13DB6

SGHFI 7311N

GENERAL DESCRIPTION E9986CA3

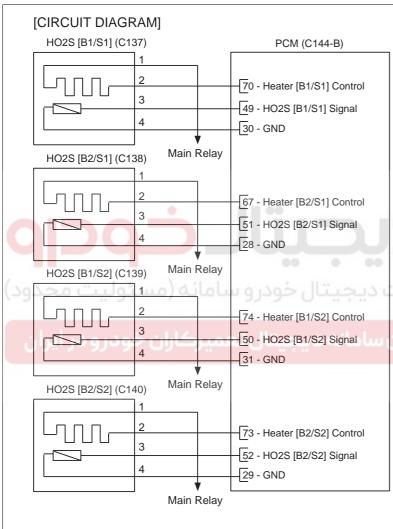
The normal operating temperature of the HO2S(Heated Oxygen Sensor) ranges from 350 to 850°C(662 to 1562°F). The HO2S heater greatly decreases the amount of time required for fuel control to become active. The PCM provides a pulse width modulated control circuit to adjust current through the heater. When the HO2S is cold, the value of the resistance is low and the current in the circuit is high. On the contrary, if the temperature in the resistor of the sensor rises, the current drops gradually.

DTC DESCRIPTION E4ADDD51

Checking current from HO2S under detecting condition, if the heater current is below a certain threshold for more than predetermined time, PCM sets P0036. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION ECBD9477

Item	Detecting Condition	Possible cause
DTC Strategy	Monitor the current through the heater	
Enable Conditions	 Engine Running > 60 sec. Heater Duty Cycle > 18% Max. Duty Cycle - Min. Duty Cycle < 5% 	Poor Connection
Threshold value	Filtered Heater Current < threshold value	HO2S(B1/S2)PCM
Diagnosis Time	Continuous (More than 2.5 second failure for every 5 second test)	
MIL On Condition	2 Driving Cycles	


FL -125

SPECIFICATION E

(REFERENCE ONLY)

Condition	Current(A)
Heater Current at 13.5V, 450 (842°F) Exhaust	0.52 ± 0.1

SCHEMATIC DIAGRAM E90439EC

[CONNECTION INFORMATION] HO2S [B1/S1]

Terminal	Connected to	Function
1	Main Relay	Battery Voltage (B+)
2	PCM C144-B (70)	Heater [B1/S1] Control
3	PCM C144-B (49)	HO2S [B1/S1] Signal
4	PCM C144-B (30)	Sensor ground

HO2S [B2/S1]

Terminal	Connected to	Function
1	Main Relay	Battery Voltage (B+)
2	PCM C144-B (67)	Heater [B2/S1] Control
3	PCM C144-B (51)	HO2S [B2/S1] Signal
4	PCM C144-B (28)	Sensor ground

HO2S [B1/S2]

Terminal	Connected to	Function
1	Main Relay	Battery Voltage (B+)
2	PCM C144-B (74)	Heater [B1/S2] Control
3	PCM C144-B (50)	HO2S [B1/S2] Signal
4	PCM C144-B (31)	Sensor ground

HO2S [B2/S2]

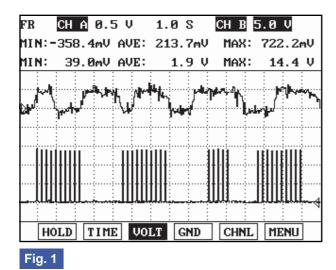
Terminal	Connected to	Function
1	Main Relay	Battery Voltage (B+)
2	PCM C144-B (73)	Heater [B2/S2] Control
3	PCM C144-B (52)	HO2S [B2/S2] Signal
4	PCM C144-B (29)	Sensor ground

[HARNESS CONNECTORS]

C137,C138,C139,C140

HO2S [Bank 1/Sensor 1] HO2S [Bank 2/Sensor 1]

HO2S [Bank 1/Sensor 2]

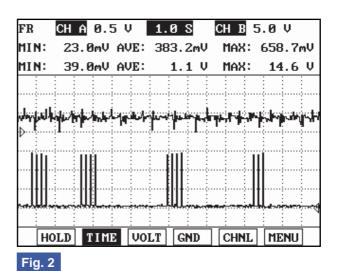

HO2S [Bank 2/Sensor 2]

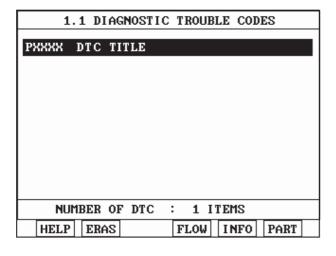
299876543210987654321 4938373834323332822221 49383738343233328222221 6938376584328339887465443241 892877654322170888766648281

UFBG250B

FL -126 FUEL SYSTEM

SIGNAL WAVEFORM AND DATA EF26675E




Fig. 1: The signal waveforms of front HO2S(the upper) and heater(the lower) at idle Fig. 2: The signal waveforms of rear HO2S(the upper) and heater(the lower) at idle

SEPFL6412N

The HO2S requires a minimum temperature to provide a closed loop fuel control system. So the HO2S contains a heater element to reduce its warm-up time and ensure its performance during all driving conditions. The PCM controls this heater element by duty cycle. The main relay supplies voltage to the heater and the PCM provides a ground circuit for activating the heater.

MONITOR DTC STATUS EDCER

- 1. Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu.
 - 4) Read "DTC Status" parameter.

PXXXX DTC TITLE

1.MIL STATUS: ON/OFF
2.DTC STATUS: PRESENT/HISTORY
3.DIAG.STATUS: DIAGNOSIS FINISHED!

SGHFL7305L

5) Is "Present" Fault displayed?

FL -127

YES

Go to "Terminal and connector inspection" procedure.

NO

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

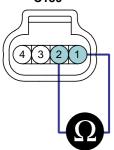
TERMINAL AND CONNECTOR INSPECTION E4CAD221

- 1. Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- 2. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

Repair as necessary and go to "Verification of Vehicle Repair" procedure

NO


Go to " Component Inspection " procedure.

COMPONENT INSPECTION E8EBD4C3

- 1. Check HO2S(B1/S2) Heater resistance
 - 1) IG "OFF" and disconnect HO2S(B1/S2) connector
 - 2) Measure resistance between terminal 1 and 2 of HO2S(B1/S2)(Component Side)

Specification: 8.1 ~ 11.1 at 21 (69.8)

C139

- 1. Battery Voltage (B+)
- 2. Heater [B1/S2] Control
- 3. HO2S [B1/S2] Signal
- 4. Sensor ground

SBLF26416L

3) Is the measured resistance within specification?

YES

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

FL -128 FUEL SYSTEM

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. Before or after testing PCM on the vehicle, use this function before reusing the PCM

Substitute with a known - good HO2S(B1/S2) and check for proper operation. If the problem is corrected, replace HO2S(B1/S2) and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR E309497D

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC

Go to the applicable troubleshooting procedure.

FL -129

DTC P0037 HO2S HEATER CIRCUIT LOW (BANK 1 / SENSOR 2)

COMPONENT LOCATION E440EB1A

Refer to DTC P0036.

GENERAL DESCRIPTION E053347B

Refer to DTC P0036.

DTC DESCRIPTION E6C81407

If the PCM detects short to ground or open in heater under detecting conditions, PCM sets P0037. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION E31AFB47

Item	Detecting Condition	Possible cause
DTC Strategy	Detects a short to ground or open	
Enable Conditions	 No disabling Faults Present Engine Running 11V Ignition Voltage 16V 	Poor Connection Open in Power Circuit
Threshold value	short to ground or open circuit	Open or short to ground in control circuit
Diagnosis Time	Continuous (More than 5 seconds failure for every 10 seconds test)	• HO2S(B1/S2) • PCM
MIL On Condition	2 Driving Cycles	

SPECIFICATION E194E319

Heater		
Resistance ()	8.1 ~ 11.1 at 21 (69.8)	

SCHEMATIC DIAGRAM E65E20C2

Refer to DTC P0036.

SIGNAL WAVEFORM AND DATA EDD53437

Refer to DTC P0036.

MONITOR DTC STATUS EE1529D0

Refer to DTC P0036.

TERMINAL AND CONNECTOR INSPECTION E12A92E7

Refer to DTC P0036.

FL -130 FUEL SYSTEM

POWER CIRCUIT INSPECTION E372DAA1

- 1. IG "OFF" & Disconnect HO2S(B1/S2) connector.
- 2. IG "ON" & ENG "OFF".
- 3. Measure voltage between terminal 1 of HO2S(B1/S2) harness connector and chassis ground.

Specification: B+

4. Is the measured voltage within specification?

Go to HO2S(B1/S2) heater "Control Circuit Inspection" procedure.

NO

Repair open or short to ground in HO2S(B1/S2) Heater power circuit then, go to "Verification of Vehicle Repair" procedure.

CONTROL CIRCUIT INSPECTION ED545BBD

- Check short to ground in harness.
 - 1) IG "OFF" and disconnect HO2S(B1/S2) connector.
 - 2) Measure resistance between terminal 2 of HO2S(B1/S2) harness connector and chassis ground.

Specification: Infinite

3) Is the measured resistance within specification?

YES

Go to HO2S(B1/S2) "Check Open in harness" as follows.

NO

Repair short to ground in HO2S (B1/S2) heater control circuit and go to "Verification of Vehicle Repair" procedure.

- 2. Check open in harness
 - 1) IG "OFF" and disconnect HO2S(B1/S2) and PCM connector.
 - 2) Measure resistance between terminal 2 of HO2S(B1/S2) harness connector and terminal 74 of PCM harness connector(C144-B).

Specification: Approx. below 1

3) Is the measured resistance within specification?

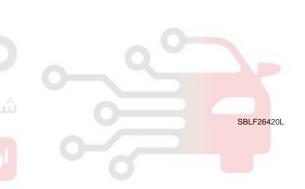
YES

Go to HO2S(B1/S2) "Component Inspection" procedure.

FL -131

Repair open in HO2S(B1/S2) heater control circuit and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION EA451FD7


- 1. Check HO2S(B1/S2) Heater resistance
 - 1) IG "OFF" and disconnect HO2S(B1/S2) connector
 - 2) Measure resistance between terminal 1 and 2 of HO2S(B1/S2)(Component Side)

SPECIFICATION:

Heater		
Resistance ()	8.1 ~ 11.1 at 21 (69.8)	

- 1. HO2S(B1/S2) heater Power
- 2. HO2S(B1/S2) Heater Control
- 3. HO2S (B1/S2) Signal
- 4. Sensor ground

3) Is the measured resistance within specification?

YES

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM.

Before or after testing PCM on the vehicle, use this function before reusing the PCM.

Substitute with a known - good HO2S(B1/S2) and check for proper operation. If the problem is corrected, replace HO2S(B1/S2) and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR ED4A67EE

Refer to DTC P0036.

FL -132 FUEL SYSTEM

DTC P0038 HO2S HEATER CIRCUIT HIGH (BANK 1 / SENSOR 2)

COMPONENT LOCATION E473436E

Refer to DTC P0036.

GENERAL DESCRIPTION E235EEF0

Refer to DTC P0036.

DTC DESCRIPTION E0724472

If the PCM detects short to battery in heater under detecting conditions, PCM sets P0038. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION EABDA37E

Item	Detecting Condition	Possible cause
DTC Strategy	Detects a short to battery	
Enable Conditions	 No disabling Faults Present Engine Running 11V Ignition Voltage 16V 	Poor Connectionshort to battery in control
Threshold value	short to battery	circuit
Diagnosis Time	Continuous (More than 5 seconds failure for every 10 seconds test)	• HO2S(B1/S2) • PCM
MIL On Condition	2 Driving Cycles	0

SPECIFICATION EED5CB7E

Heater		
Resistance ()	8.1 ~ 11.1 at 21 (69.8)	

SCHEMATIC DIAGRAM EF85C7E3

Refer to DTC P0036.

SIGNAL WAVEFORM AND DATA E9AB6C47

Refer to DTC P0036.

MONITOR DTC STATUS E71E05E6

Refer to DTC P0036.

TERMINAL AND CONNECTOR INSPECTION ED9FD918

Refer to DTC P0036.

FL -133

CONTROL CIRCUIT INSPECTION E59C935C

- 1. IG "OFF" & disconnect HO2S(B1/S2) connector.
- 2. IG "ON" & ENG "OFF".
- 3. Measure voltage between terminal 2 of HO2S(B1/S2) harness connector and chassis ground.

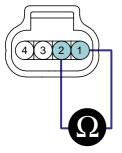
Specification: Approx. 0 V

4. Is the measured voltage within specification?

Go to HO2S(B1/S2) "Component Inspection" procedure.

NO

Repair short to battery in HO2S (B1/S2) heater control circuit and go to "Verification of Vehicle Repair" procedure.


COMPONENT INSPECTION E05C4845

- 1. Check HO2S(B1/S2) Heater resistance
 - 1) IG "OFF" and disconnect HO2S(B1/S2) connector
 - Measure resistance between terminal 1 and 2 of HO2S(B1/S2)(Component Side)

SPECIFICATION:

Hes دیجیتال تعمیرکاران خودرو در ایران	ateru lebu lebu lebu lebu lebu lebu lebu leb	7			
Resistance ()	8.1 ~ 11.1	at 21	(69.8)	

- 1. HO2S(B1/S2) heater Power
- 2. HO2S(B1/S2) Heater Control
- 3. HO2S (B1/S2) Signal
- 4. Sensor ground

SBLF26420L

3) Is the measured resistance within specification?

YES

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

MOTE

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM.

Before or after testing PCM on the vehicle, use this function before reusing the PCM.

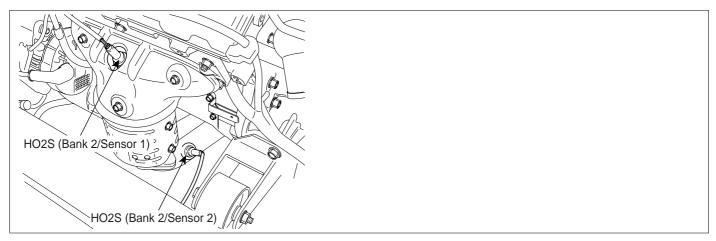
FL -134 FUEL SYSTEM

NO

Substitute with a known - good HO2S(B1/S2) and check for proper operation. If the problem is corrected, replace HO2S(B1/S2) and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR E24E2367

Refer to DTC P0036.



FL -135

DTC P0050 HO2S HEATER CONTROL CIRCUIT (BANK 2 / SENSOR 1)

COMPONENT LOCATION E8FF8418

SGHFL7312N

GENERAL DESCRIPTION E529FCDA

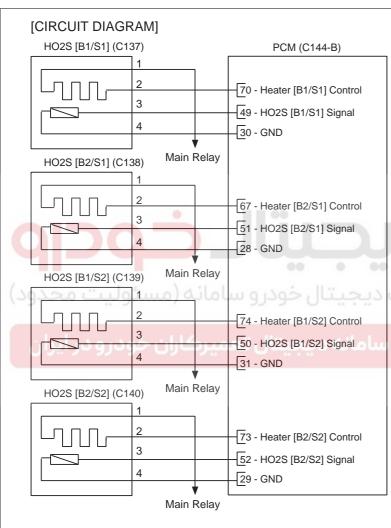
The normal operating temperature of the HO2S(Heated Oxygen Sensor) ranges from 350 to 850°C(662 to 1562°F). The HO2S heater greatly decreases the amount of time required for fuel control to become active. The PCM provides a pulse width modulated control circuit to adjust current through the heater. When the HO2S is cold, the value of the resistance is low and the current in the circuit is high. On the contrary, if the temperature in the resistor of the sensor rises, the current drops gradually.

DTC DESCRIPTION E77D9E41

Checking current from HO2S under detecting condition, if the heater current is below a certain threshold for more than predetermined time, PCM sets P0050. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION E87A0C49

Item	Detecting Condition	Possible cause
DTC Strategy	Monitor the current through the heater	
Enable Conditions	 Engine Running > 60 sec. Heater Duty Cycle > 40% Max. Duty Cycle - Min. Duty Cycle < 5% 	Poor Connection
Threshold value	Filtered Heater Current < threshold value	HO2S(B2/S1)PCM
Diagnosis Time	Continuous (More than 2.5 second failure for every 5 second test)	
MIL On Condition	2 Driving Cycles	


FL -136 **FUEL SYSTEM**

SPECIFICATION

(REFERENCE ONLY)

Condition	Current(A)
Heater Current at 13.5V, 450 (842°F) Exhaust	0.52 ± 0.1

SCHEMATIC DIAGRAM

[CONNECTION INFORMATION] HO2S [B1/S1]

Terminal	Connected to	Function
1	Main Relay	Battery Voltage (B+)
2	PCM C144-B (70)	Heater [B1/S1] Control
3	PCM C144-B (49)	HO2S [B1/S1] Signal
4	PCM C144-B (30)	Sensor ground

HO2S [B2/S1]

Terminal	Connected to	Function	
1	Main Relay	Battery Voltage (B+)	
2	PCM C144-B (67)	Heater [B2/S1] Control	
3	PCM C144-B (51)	HO2S [B2/S1] Signal	
4	PCM C144-B (28)	Sensor ground	

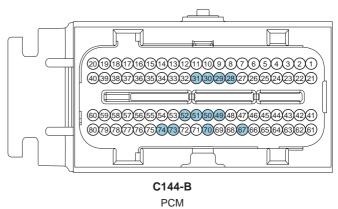
HO2S [B1/S2]

Terminal	Connected to	Function
1	Main Relay	Battery Voltage (B+)
2	PCM C144-B (74)	Heater [B1/S2] Control
3	PCM C144-B (50)	HO2S [B1/S2] Signal
4	PCM C144-B (31)	Sensor ground

HO2S [B2/S2]

Terminal	Connected to	Function
1	Main Relay	Battery Voltage (B+)
2	PCM C144-B (73)	Heater [B2/S2] Control
3	PCM C144-B (52)	HO2S [B2/S2] Signal
4	PCM C144-B (29)	Sensor ground

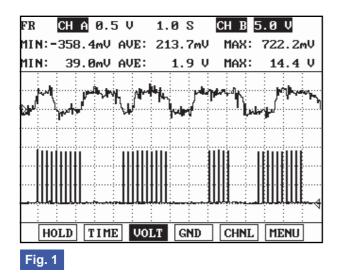
[HARNESS CONNECTORS]


C137,C138,C139,C140

HO2S [Bank 1/Sensor 1]

HO2S [Bank 2/Sensor 1]

HO2S [Bank 1/Sensor 2]


HO2S [Bank 2/Sensor 2]

UFBG250B

FL -137

SIGNAL WAVEFORM AND DATA E5480

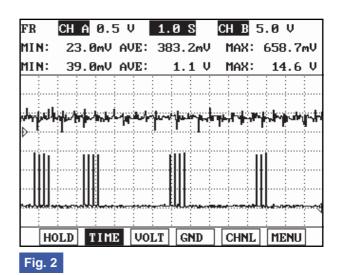
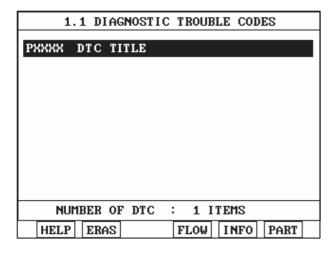


Fig. 1: The signal waveforms of front HO2S(the upper) and heater(the lower) at idle


Fig. 2: The signal waveforms of rear HO2S(the upper) and heater(the lower) at idle

SEPFL6412N

The HO2S requires a minimum temperature to provide a closed loop fuel control system. So the HO2S contains a heater element to reduce its warm-up time and ensure its performance during all driving conditions. The PCM controls this heater element by duty cycle. The main relay supplies voltage to the heater and the PCM provides a ground circuit for activating the heater.

MONITOR DTC STATUS E531AE7A

- 1. Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu.
 - 4) Read "DTC Status" parameter.

PXXXX DTC TITLE

1.MIL STATUS: ON/OFF
2.DTC STATUS: PRESENT/HISTORY
3.DIAG.STATUS: DIAGNOSIS FINISHED!

SGHFL7305L

5) Is "Present" Fault displayed?

FL -138 FUEL SYSTEM

YES

Go to "Terminal and connector inspection" procedure.

NO

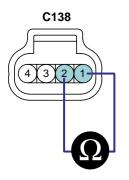
Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

TERMINAL AND CONNECTOR INSPECTION E586AA5D

- Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

Repair as necessary and go to "Verification of Vehicle Repair" procedure


NO

Go to "Component Inspection" procedure.

COMPONENT INSPECTION E3F72CDD

- Check HO2S(B2/S1) Heater resistance
 - 1) IG "OFF" and disconnect HO2S(B2/S1) connector
 - Measure resistance between terminal 1 and 2 of HO2S(B2/S1)(Component Side)

Specification: 8.1 ~ 11.1 at 21 (69.8)

- 1. Battery Voltage (B+)
- 2. Heater [B2/S1] Control
- 3. HO2S [B2/S1] Signal
- 4. Sensor ground

SBLF26422L

3) Is the measured resistance within specification?

YES

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

FL -139

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. Before or after testing PCM on the vehicle, use this function before reusing the PCM

Substitute with a known - good HO2S(B2/S1) and check for proper operation. If the problem is corrected, replace HO2S(B2/S1) and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR EF05F3CE

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC

Go to the applicable troubleshooting procedure.

FL -140 FUEL SYSTEM

DTC P0051 HO2S HEATER CIRCUIT LOW (BANK 2 / SENSOR 1)

COMPONENT LOCATION E1F9BFF3

Refer to DTC P0050.

GENERAL DESCRIPTION E3132DDB

Refer to DTC P0050.

DTC DESCRIPTION E4E4C3A1

If the PCM detects short to ground or open in heater under detecting conditions, PCM sets P0051. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION E2E759FC

Item	Detecting Condition	Possible cause
DTC Strategy	Detects a short to ground or open	
Enable Conditions	 No disabling Faults Present Engine Running 11V Ignition Voltage 16V 	Poor Connection Open in Power Circuit
Threshold value	short to ground or open circuit	Open or short to ground in control circuit
Diagnosis Time	Continuous (More than 5 seconds failure for every 10 seconds test)	• HO2S(B2/S1) • PCM
MIL On Condition	2 Driving Cycles	0

SPECIFICATION E7DBB366

Не	eater
Resistance ()	8.1 ~ 11.1 at 21 (69.8)

SCHEMATIC DIAGRAM E9E8B77B

Refer to DTC P0050.

SIGNAL WAVEFORM AND DATA E3E1AF74

Refer to DTC P0050.

MONITOR DTC STATUS E5A58276

Refer to DTC P0050.

TERMINAL AND CONNECTOR INSPECTION E65FBA1E

Refer to DTC P0050.

FL -141

POWER CIRCUIT INSPECTION

- 1. IG "OFF" & Disconnect HO2S(B2/S1) connector.
- 2. IG "ON" & ENG "OFF".
- 3. Measure voltage between terminal 1 of HO2S(B2/S1) harness connector and chassis ground.

Specification: B+

4. Is the measured voltage within specification?

Go to HO2S(B2/S1) heater "Control Circuit Inspection" procedure.

NO

Repair open or short to ground in HO2S(B2/S1) Heater power circuit then, go to "Verification of Vehicle Repair" procedure.

CONTROL CIRCUIT INSPECTION EC6E05FE

- Check short to ground in harness.
 - 1) IG "OFF" and disconnect HO2S(B2/S1) connector.
 - 2) Measure resistance between terminal 2 of HO2S(B2/S1) harness connector and chassis ground.

Specification: Infinite

3) Is the measured resistance within specification?

YES

Go to HO2S(B2/S1) "Check Open in harness" as follows.

NO

Repair short to ground in HO2S (B2/S1) heater control circuit and go to "Verification of Vehicle Repair" procedure.

- 2. Check open in harness
 - 1) IG "OFF" and disconnect HO2S(B2/S1) and PCM connector.
 - 2) Measure resistance between terminal 2 of HO2S(B2/S1) harness connector and terminal 67 of PCM harness connector(C144-B).

Specification: Approx. below 1

3) Is the measured resistance within specification?

YES

Go to HO2S(B2/S1) "Component Inspection" procedure.

FL -142 FUEL SYSTEM

Repair open in HO2S(B2/S1) heater control circuit and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION E3253513

- 1. Check HO2S(B2/S1) Heater resistance
 - 1) IG "OFF" and disconnect HO2S(B2/S1) connector
 - 2) Measure resistance between terminal 1 and 2 of HO2S(B2/S1)(Component Side)

SPECIFICATION:

Heater					
Resistance ()	8.1 ~ 11.1 at 21 (69.8)				

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM.

Before or after testing PCM on the vehicle, use this function before reusing the PCM.

Substitute with a known - good HO2S(B2/S1) and check for proper operation. If the problem is corrected, replace HO2S(B2/S1) and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR ECF3346E

Refer to DTC P0050.

FL -143

DTC P0052 HO2S HEATER CIRCUIT HIGH (BANK 2 / SENSOR 1)

COMPONENT LOCATION E143EF97

Refer to DTC P0050.

GENERAL DESCRIPTION EBBBAA27

Refer to DTC P0050.

DTC DESCRIPTION E12626DB

If the PCM detects short to battery in heater under detecting conditions, PCM sets P0052. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION E371941E

Item	Detecting Condition	Possible cause
DTC Strategy	Detects a short to battery	
Enable Conditions	 No disabling Faults Present Engine Running 11V Ignition Voltage 16V 	Poor Connection Short to battery in control circuit
Threshold value	short to battery	
Diagnosis Time	Continuous (More than 5 seconds failure for every 10 seconds test)	• HO2S(B2/S1) • PCM
MIL On Condition	2 Driving Cycles	

SPECIFICATION E36DD25B

Heater				
Resistance ()	8.1 ~ 11.1 at 21 (69.8)			

SCHEMATIC DIAGRAM E2B69204

Refer to DTC P0050.

SIGNAL WAVEFORM AND DATA E46915FE

Refer to DTC P0050.

MONITOR DTC STATUS E6779C7A

Refer to DTC P0050.

TERMINAL AND CONNECTOR INSPECTION EE68E64C

Refer to DTC P0050.

FL -144 FUEL SYSTEM

CONTROL CIRCUIT INSPECTION E8F9B5F3

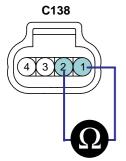
- 1. IG "OFF" & disconnect HO2S(B2/S1) connector.
- 2. IG "ON" & ENG "OFF".
- 3. Measure voltage between terminal 2 of HO2S(B2/S1) harness connector and chassis ground.

Specification: Approx. 0 V

4. Is the measured voltage within specification?

Go to HO2S(B2/S1) "Component Inspection" procedure.

NO


Repair short to battery in HO2S(B2/S1) Heater control circuit and go to "Verification of Vhicle Repair" procedure.

COMPONENT INSPECTION ECCCB86F

- 1. Check HO2S(B2/S1) Heater resistance
 - 1) IG "OFF" and disconnect HO2S(B2/S1) connector
 - 2) Measure resistance between terminal 1 and 2 of HO2S(B2/S1)(Component Side)

SPECIFICATION:

Hei دیجیتال تعمیرکاران خودرو در ایران	اولین سater	d	T
Resistance ()	8.1 ~ 11.1	at 21 (69.8)	

- 1. HO2S(B2/S1) Heater Power
- 2. HO2S(B2/S1) Heater Control
- 3. HO2S(B2/S1) Signal
- 4. Sensor Ground

SBLF26426L

3) Is the measured resistance within specification?

YES

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

NOTE

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM.

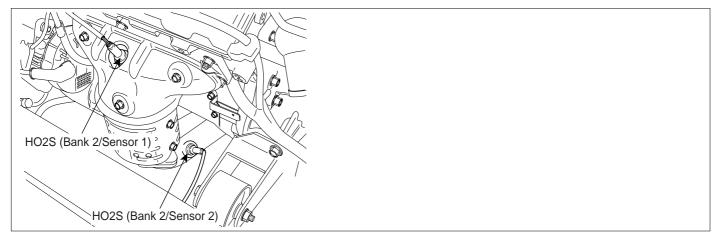
Before or after testing PCM on the vehicle, use this function before reusing the PCM.

FL -145

Substitute with a known - good HO2S(B2/S1) and check for proper operation. If the problem is corrected, replace HO2S(B2/S1) and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR E8D77CA8

Refer to DTC P0050.



FL -146 FUEL SYSTEM

DTC P0056 HO2S HEATER CONTROL CIRCUIT (BANK 2 / SENSOR 2)

COMPONENT LOCATION EA6693FB

SGHFI 7312N

GENERAL DESCRIPTION E975588A

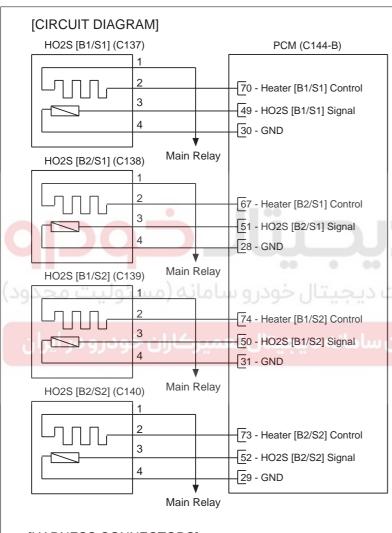
The normal operating temperature of the HO2S(Heated Oxygen Sensor) ranges from 350 to 850°C(662 to 1562°F). The HO2S heater greatly decreases the amount of time required for fuel control to become active. The PCM provides a pulse width modulated control circuit to adjust current through the heater. When the HO2S is cold, the value of the resistance is low and the current in the circuit is high. On the contrary, if the temperature in the resistor of the sensor rises, the current drops gradually.

DTC DESCRIPTION EDEF88A2

Checking current from HO2S under detecting condition, if the heater current is below a certain threshold for more than predetermined time, PCM sets P0056. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION EC3AD4E3

Item	Detecting Condition	Possible cause
DTC Strategy	Monitor the current through the heater	
Enable Conditions	 Engine Running > 60 sec. Heater Duty Cycle > 18% Max. Duty Cycle - Min. Duty Cycle < 5% 	Poor connection
Threshold value	Filtered Heater Current < threshold value	HO2S(B2/S2)PCM
Diagnosis Time	Continuous (More than 2.5 second failure for every 5 second test)	
MIL On Condition	2 Driving Cycles	


FL -147

SPECIFICATION E36B45B4

(REFERENCE ONLY)

Condition	Current(A)
Heater Current at 13.5V, 450 (842°F) Exhaust	0.52 ± 0.1

SCHEMATIC DIAGRAM E1698293

[CONNECTION INFORMATION] HO2S [B1/S1]

Terminal	Connected to	Function	
1	Main Relay	Battery Voltage (B+)	
2	PCM C144-B (70)	Heater [B1/S1] Control	
3	PCM C144-B (49)	HO2S [B1/S1] Signal	
4	PCM C144-B (30)	Sensor ground	

HO2S [B2/S1]

Terminal	Connected to	Function	
1	Main Relay	Battery Voltage (B+)	
2	PCM C144-B (67)	Heater [B2/S1] Control	
3	PCM C144-B (51)	HO2S [B2/S1] Signal	
4	PCM C144-B (28)	Sensor ground	

HO2S [B1/S2]

Terminal	Connected to	Function	
1	Main Relay	Battery Voltage (B+)	
2	PCM C144-B (74)	Heater [B1/S2] Control	
3	PCM C144-B (50)	HO2S [B1/S2] Signal	
4	PCM C144-B (31)	Sensor ground	

HO2S [B2/S2]

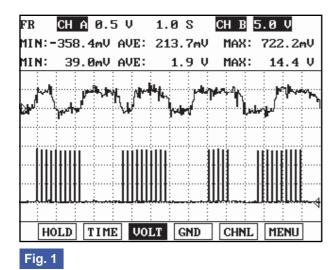
Terminal	Connected to	Function
1	Main Relay	Battery Voltage (B+)
2	PCM C144-B (73)	Heater [B2/S2] Control
3	PCM C144-B (52)	HO2S [B2/S2] Signal
4	PCM C144-B (29)	Sensor ground

[HARNESS CONNECTORS]

C137,C138,C139,C140

HO2S [Bank 1/Sensor 1] HO2S [Bank 2/Sensor 1]

HO2S [Bank 2/Sensor 1] HO2S [Bank 1/Sensor 2]


HO2S [Bank 1/Sensor 2]

209876543210987654321 4098765432130287654321 509876543230302876543221 5098765432170688766643241 8098765432170688766643261

UFBG250B

FL -148 FUEL SYSTEM

SIGNAL WAVEFORM AND DATA EE01A850

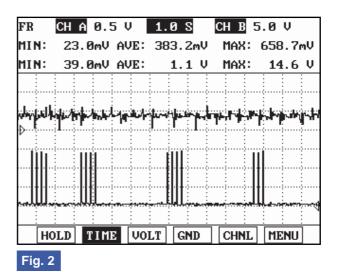
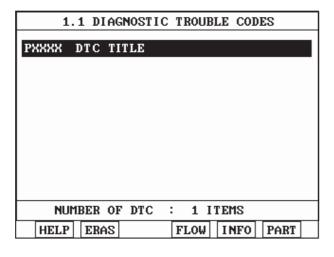


Fig. 1: The signal waveforms of front HO2S(the upper) and heater(the lower) at idle


Fig. 2: The signal waveforms of rear HO2S(the upper) and heater(the lower) at idle

SEPFL6412N

The HO2S requires a minimum temperature to provide a closed loop fuel control system. So the HO2S contains a heater element to reduce its warm-up time and ensure its performance during all driving conditions. The PCM controls this heater element by duty cycle. The main relay supplies voltage to the heater and the PCM provides a ground circuit for activating the heater.

MONITOR DTC STATUS E5AF5E9F

- 1. Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu.
 - 4) Read "DTC Status" parameter.

PXXXX DTC TITLE

1.MIL STATUS: ON/OFF
2.DTC STATUS: PRESENT/HISTORY
3.DIAG.STATUS: DIAGNOSIS FINISHED!

SGHFL7305L

5) Is "Present" Fault displayed?

FL -149

YES

Go to "Terminal and connector inspection" procedure.

NO

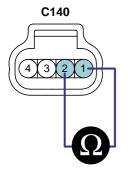
Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure

TERMINAL AND CONNECTOR INSPECTION E739D0D2

- 1. Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- 2. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

Repair as necessary and go to "Verification of Vehicle Repair" procedure


NO

Go to " Component Inspection " procedure.

COMPONENT INSPECTION EF023AAC

- 1. Check HO2S(B2/S2) Heater resistance
 - 1) IG "OFF" and disconnect HO2S(B2/S2) connector
 - 2) Measure resistance between terminal 1 and 2 of HO2S(B2/S2)(Component Side)

Specification: 8.1 ~ 11.1 at 21 (69.8)

- 1. Battery Voltage (B+)
- 2. Heater [B2/S2] Control
- 3. HO2S [B2/S2] Signal
- 4. Sensor ground

SBLF26428L

2. Is the measured resistance within specification?

YES

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

FL -150 FUEL SYSTEM

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. Before or after testing PCM on the vehicle, use this function before reusing the PCM

Substitute with a known - good HO2S(B2/S2) and check for proper operation. If the problem is corrected, replace HO2S(B2/S2) and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR E9E7D3F4

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC

Go to the applicable troubleshooting procedure.

FL -151

DTC P0057 HO2S HEATER CIRCUIT LOW (BANK 2 / SENSOR 2)

COMPONENT LOCATION EA630861

Refer to DTC P0056.

GENERAL DESCRIPTION E3FA12E1

Refer to DTC P0056.

DTC DESCRIPTION E9B9127E

If the PCM detects short to ground or open in heater under detecting conditions, PCM sets P0057. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION EA96CEBD

Item	Detecting Condition	Possible cause			
DTC Strategy	Detects a short to ground or open				
Enable Conditions	 No disabling Faults Present Engine Running 11V Ignition Voltage 16V 	Poor Connection Open in Power Circuit			
Threshold value	short to ground or open circuit	Open or short to ground in control circuit			
Diagnosis Time	Continuous (More than 5 seconds failure for every 10 seconds test)	• HO2S(B2/S2) • PCM			
MIL On Condition	2 Driving Cycles	0			

SPECIFICATION E51A7B53

Heater				
Resistance ()	8.1 ~ 11.1 at 21 (69.8)			

SCHEMATIC DIAGRAM ED446D90

Refer to DTC P0056.

SIGNAL WAVEFORM AND DATA ED42916D

Refer to DTC P0056.

MONITOR DTC STATUS EDF5EC14

Refer to DTC P0056.

TERMINAL AND CONNECTOR INSPECTION EE02EBFB

Refer to DTC P0056.

FL -152 FUEL SYSTEM

POWER CIRCUIT INSPECTION E1115F58

- 1. IG "OFF" & Disconnect HO2S(B2/S2) connector.
- 2. IG "ON" & ENG "OFF".
- 3. Measure voltage between terminal 1 of HO2S(B2/S2) harness connector and chassis ground.

Specification: B+

4. Is the measured voltage within specification?

Go to HO2S(B2/S2) heater "Control Circuit Inspection" procedure.

NO

Repair open or short to ground in HO2S(B2/S2) Heater power circuit then, go to "Verification of Vehicle Repair" procedure.

CONTROL CIRCUIT INSPECTION ED90BFA

- Check short to ground in harness.
 - 1) IG "OFF" and disconnect HO2S(B2/S2) connector.
 - 2) Measure resistance between terminal 2 of HO2S(B2/S2) harness connector and chassis ground.

Specification: Infinite

3) Is the measured resistance within specification?

YES

Go to HO2S(B2/S2) "Check Open in harness" as follows.

NO

Repair short to ground in HO2S (B2/S2) heater control circuit and go to "Verification of Vehicle Repair" procedure.

- 2. Check open in harness
 - 1) IG "OFF" and disconnect HO2S(B2/S2) and PCM connector.
 - Measure resistance between terminal 2 of HO2S(B2/S2) harness connector and terminal 73 of PCM harness connector(C144-B).

Specification: Approx. below 1

3) Is the measured resistance within specification?

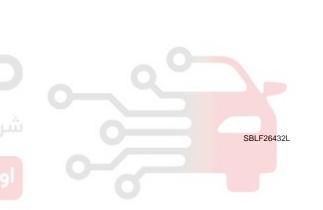
YES

Go to HO2S(B2/S2) "Component Inspection" procedure.

FL -153

Repair open in HO2S(B2/S2) heater control circuit and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION ESAA93BE


- 1. Check HO2S(B2/S2) Heater resistance
 - 1) IG "OFF" and disconnect HO2S(B2/S2) connector
 - 2) Measure resistance between terminal 1 and 2 of HO2S(B2/S2)(Component Side)

SPECIFICATION:

Heater			
Resistance ()	8.1 ~ 11.1 at 21 (69.8)		

- 4/3/2/1
- 1. HO2S(B2/S2) Heater Power
- 2. HO2S(B2/S2) Heater Control
- 3. HO2S(B2/S2) Signal
- 4. Sensor Ground

3) Is the measured resistance within specification?

YES

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM.

Before or after testing PCM on the vehicle, use this function before reusing the PCM.

Substitute with a known - good HO2S(B2/S2) and check for proper operation. If the problem is corrected, replace HO2S(B2/S2) and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR EB446184

Refer to DTC P0056.

FL -154 FUEL SYSTEM

DTC P0058 HO2S HEATER CIRCUIT HIGH (BANK 2 / SENSOR 2)

COMPONENT LOCATION E2A26E0C

Refer to DTC P0056.

GENERAL DESCRIPTION E6809915

Refer to DTC P0056.

DTC DESCRIPTION EC93FE9D

If the PCM detects short to battery in heater under detecting conditions, PCM sets P0058. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION E183856D

Item	Detecting Condition	Possible cause
DTC Strategy	Detects a short to battery	
Enable Conditions	 No disabling Faults Present Engine Running 11V Ignition Voltage 16V 	Poor ConnectionShort to battery in control
Threshold value	Short to battery	circuit
Diagnosis Time	Continuous (More than 5 seconds failure for every 10 seconds test)	• HO2S(B2/S2) • PCM
MIL On Condition	2 Driving Cycles	

SPECIFICATION E396E010

Heater			
Resistance ()	8.1 ~ 11.1 at 21 (69.8)		

SCHEMATIC DIAGRAM E30EA368

Refer to DTC P0056.

SIGNAL WAVEFORM AND DATA E1CB4F50

Refer to DTC P0056.

MONITOR DTC STATUS E9BDFDF9

Refer to DTC P0056.

TERMINAL AND CONNECTOR INSPECTION E4D663F5

Refer to DTC P0056.

FL -155

CONTROL CIRCUIT INSPECTION EA243A91

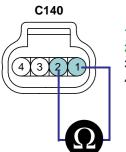
- 1. IG "OFF" & disconnect HO2S(B2/S2) connector.
- 2. IG "ON" & ENG "OFF".
- Measure voltage between terminal 2 of HO2S(B2/S2) harness connector and chassis ground.

Specification: Approx. 0 V

4. Is the measured voltage within specification?

Go to HO2S(B2/S2) "Component Inspection" procedure.

NO


Repair short to battery in HO2S (B2/S2) heater control circuit and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION EAF2CDDF

- 1. Check HO2S(B2/S2) Heater resistance
 - 1) IG "OFF" and disconnect HO2S(B2/S2) connector
 - 2) Measure resistance between terminal 1 and 2 of HO2S(B2/S2)(Component Side)

SPECIFICATION:

هe دیجیتال تعمیرکاران خودرو در ایران	ater وين				
Resistance ()	8.1 ~ 11.1	at 21	(69.8)	

- 1. HO2S(B2/S2) Heater Power
- 2. HO2S(B2/S2) Heater Control
- 3. HO2S(B2/S2) Signal
- 4. Sensor Ground

SBLF26432L

3) Is the measured resistance within specification?

YES

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

MOTE

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM.

Before or after testing PCM on the vehicle, use this function before reusing the PCM.

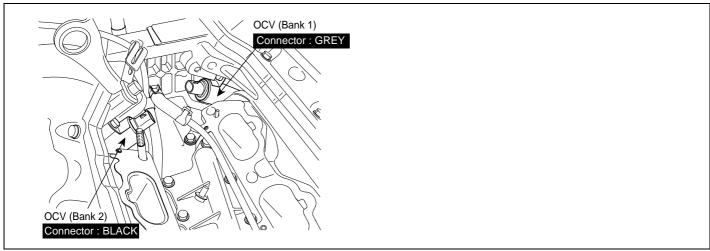
FL -156 FUEL SYSTEM

NO

Substitute with a known - good HO2S(B2/S2) and check for proper operation. If the problem is corrected, replace HO2S(B2/S2) and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR E7A99321

Refer to DTC P0056.



FL -157

INTAKE VALVE CONTROL SOLENOID CIRCUIT LOW (BANK 1) **DTC P0076**

COMPONENT LOCATION E8595423

EGRF602F

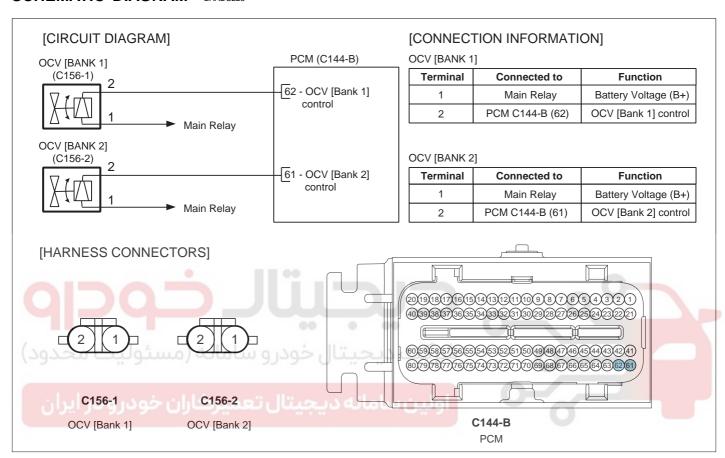
GENERAL DESCRIPTION

The CVVT (Continuously Variable Valve Timing) system is installed to the chain sprocket of the intake camshaft. This system controls the intake camshaft to provide the optimal valve timing. The PCM controls the Oil Control Valve(OCV), based on the signals output from mass air flow, throttle position and engine coolant temperature. The CVVT controller regulates the intake camshaft angle using oil pressure through the OCV. As result, the relative position between the camshaft and the crankshaft becomes optimal, and the engine torque improves, fuel economy improves, exhaust emissions decrease under overall driving conditions.

DTC DESCRIPTION EGEOF769

When the enable condition is satisfied, The PCM checks that OCV outputs (Voltage level) are observed when OCVs are commanded. When a OCV output failure is detected, the appropriate fail counter is incremented. If the failure threshold is exceeded 5 seconds during one diagnostic test(10second), the test is failed and DTC is stored. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION FE7961C5


Item	Detecting Condition	Possible cause
DTC Strategy	Detects a short to ground or open	
Enable Conditions	No disabling Faults PresentEngine Running11V Ignition Voltage 16V	Poor ConnectionOpen in Power Circuit
Threshold value	Short to ground or open circuit	Open or short to ground in control circuit
Diagnosis Time	Continuous (More than 5 seconds failure for every 10 seconds test)	• OCV • PCM
MIL On Condition	2 Driving Cycles	

FL -158 FUEL SYSTEM

SPECIFICATION ETCAACAE

Resistance ()	6.7 ~ 7.7 at 20 (68)
----------------	-----------------------

SCHEMATIC DIAGRAM EAADC225

UFBG255A

SIGNAL WAVEFORM AND DATA EE23572F

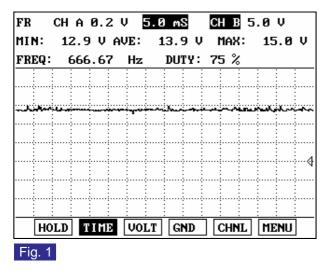
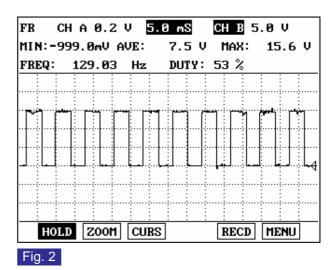



Fig. 1 : Idle

Fig. 2: Accelleration

EGRF602G

FL -159

The oil control valve is commanded by a pulse-width-modulated signal from the engine control unit. A duty cycle of zero commands the cam phaser to its default position. A duty cycle of 100% commands the phaser to its maximum phased position. When the phaser must be controlled to an intermediate position, the duty cycle is maintained in the region of the 'hold position'. This is a medium duty cycle, usually between 35% and 65%, depending on temperature and voltage conditions.

MONITOR DTC STATUS EA959D0

- Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu.
 - 4) Read "DTC Status" parameter.

SGHFL7305L

5) Is "Present" Fault displayed?

Go to "Terminal and connector inspection" procedure.

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

TERMINAL AND CONNECTOR INSPECTION EC3C8F08

- Many malfunctions in the electrical system are caused by poor harness and terminal condition.
 Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- 2. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

FL -160 FUEL SYSTEM

Repair as necessary and go to "Verification of Vehicle Repair" procedure

Go to " Power Circuit Inspection " procedure

POWER CIRCUIT INSPECTION E0E76451

- 1. IG "OFF" & Disconnect OCV(B1) connector.
- 2. IG "ON" & ENG "OFF".
- 3. Measure voltage between terminal 1 of OCV(B1) harness connector and chassis ground.

Specification: B+

4. Is the measured voltage within specification?

YES

Go to "Control Circuit Inspection" procedure.

NO

Check fuse between Main Relay and OCV is open or not installed.

Check open in power circuit between Main Relay and OCV power circuit.

Repair or repalce as necessary and then go to "Verification of Vehicle Repair" procedure.

CONTROL CIRCUIT INSPECTION EEA9D296

- 1. Check short to ground in harness.
 - 1) IG "OFF" and disconnect OCV connector.
 - 2) IG "ON" & ENG "OFF".
 - 3) Measure resistance between terminal 2 of OCV harness connector and chassis ground.

Specification: Infinite

4) Is the measured resistance within specification?

YES

Go to "Check open in harness" as follows

NO

Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

- Check open in harness
 - 1) IG "OFF" and disconnect OCV and PCM connector.

FL -161

2) Measure resistance between terminal 2 of OCV harness connector and terminal 62 of PCM harness connector (C144-B).

Specification: Approx. below 1

3) Is the measured resistance within specification?

Go to "Component Inspection" procedure.

NO

4) Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION E79B8168

- Check OCV
 - 1) IG "OFF" and disconnect OCV connector.
 - Measure resistance between terminal 1 and 2 of OCV. (Component Side)

SPECIFICATION:

SBLF26437L

3) Is the measured resistance within specification?

YES

Go to "OCV Actuation Test" as follows.

NO

Substitute with a known - good OCV and check for proper operation. If the problem is corrected, replace OCV and go to "Verification of Vehicle Repair" procedure.

- OCV Actuation Test
 - 1) Connect scantool and IG "ON".
 - 2) Select "OCV" on the Actuation Test.
 - Activate "OCV" by pressing "STRT(F1)" key. (should hear a faint click from Oil Control solenoid Valve)

FL -162 FUEL SYSTEM

4) Repeat this procedure 4 or 5 times to ensure reliability.

OIL CONTRO	L VALVE
DURAT I ON	UNTIL STOP KEY
METHOD	ACTIVATION
CONDITION	IG.KEY ON ENGINE OFF
	TRT1, IF YOU ARE READY !

EGRE602M

5) Does OCV generate click sound during acutation test?

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM.

Before or after testing PCM on the vehicle, use this function before reusing the PCM

Substitute with a known - good OCV and check for proper operation. If the problem is corrected, replace OCV and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR EC804BA6

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC

Go to the applicable troubleshooting procedure.

FL -163

DTC P0077 INTAKE VALVE CONTROL SOLENOID CIRCUIT HIGH (BANK 1)

COMPONENT LOCATION E713BA03

Refer to DTC P0076.

GENERAL DESCRIPTION EEFC741C

Refer to DTC P0076.

DTC DESCRIPTION E7771110

When the enable condition is satisfied, The PCM checks that OCV outputs (Voltage level) are observed when OCVs are commanded. When a OCV output failure is detected, the appropriate fail counter is incremented.

If the failure threshold is exceeded 5 seconds during one diagnostic test(10second), the test is failed and DTC is stored. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION E3F253A6

Item	Detecting Condition	Possible cause
DTC Strategy	Detects a short to battery	
Enable Conditions	 No disabling Faults Present Engine Running 11V Ignition Voltage 16V 	Poor Connection Short to battery in Control
Threshold value	Short to battery	Circuit
Diagnosis Time	Continuous (More than 5 seconds failure for every 10 seconds test)	• OCV • PCM
MIL On Condition	2 Driving Cycles	

SPECIFICATION E4E7B2CE

1\csistance () 0.7 ~ 1.1 at 20 (00)		Resistance ()	6.7 ~ 7.7 at 20 (68)
---------------------------------------	--	----------------	-----------------------

SCHEMATIC DIAGRAM EA10C1DD

Refer to DTC P0076.

SIGNAL WAVEFORM AND DATA E68E9FBA

Refer to DTC P0076.

MONITOR DTC STATUS E00B9FEE

Refer to DTC P0076.

TERMINAL AND CONNECTOR INSPECTION EA147CF4

Refer to DTC P0076.

FL -164 FUEL SYSTEM

CONTROL CIRCUIT INSPECTION E2A2FDA7

- 1. IG "OFF" and Disconnect OCV connector.
- 2. Measure resistance between terminal 1 and 2 of OCV harness connector.

Specification: Infinite

3. Is the measured resistance within specification?

Go to "Component Inspection" procedure.

Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION E6D806A

- 1. Check OCV
 - IG "OFF" and disconnect OCV connector.
 - 2) Measure resistance between terminal 1 and 2 of OCV. (Component Side)

Specification: 6.7 ~ 7.7 at 20 (68

SBLF26437L

3) Is the measured resistance within specification?

Go to "OCV Actuation Test" as follows.

NO

Substitute with a known - good OCV and check for proper operation. If the problem is corrected, replace OCV and go to "Verification of Vehicle Repair" procedure.

- 2. OCV Actuation Test
 - 1) Connect scantool and IG "ON".
 - Select "OCV" on the Actuation Test.
 - 3) Activate "OCV" by pressing "STRT(F1)" key. (should hear a faint click from Oil Control solenoid Valve)

FL -165

4) Repeat this procedure 4 or 5 times to ensure reliability.

OIL CONTRO	L VALVE
DURAT I ON	UNTIL STOP KEY
METHOD	ACTIVATION
CONDITION	IG.KEY ON ENGINE OFF
	TRT1, IF YOU ARE READY !

FGRF602M

5) Does OCV generate click sound during acutation test?

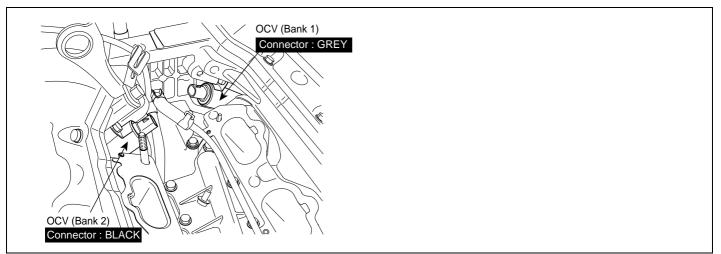
Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM.

Before or after testing PCM on the vehicle, use this function before reusing the PCM

اولین سامانه دیجیتال تعمیرکاران خودر _NO

Substitute with a known - good OCV and check for proper operation. If the problem is corrected, replace OCV and go to "Verification of Vehicle Repair" procedure.


VERIFICATION OF VEHICLE REPAIR ED5A0FBF

Refer to DTC P0076.

FL -166 FUEL SYSTEM

DTC P0082 INTAKE VALVE CONTROL SOLENOID CIRCUIT LOW (BANK 2)

COMPONENT LOCATION E24018DB

EGRF602Q

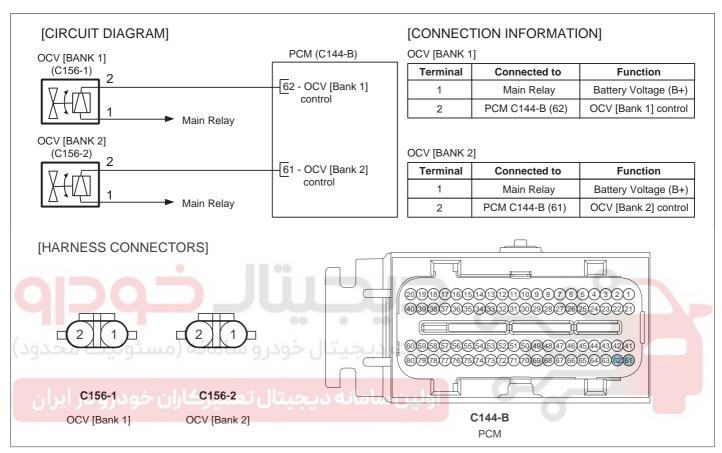
GENERAL DESCRIPTION ED456CBC

The CVVT (Continuously Variable Valve Timing) system is installed to the chain sprocket of the intake camshaft. This system controls the intake camshaft to provide the optimal valve timing. The PCM controls the Oil Control Valve(OCV), based on the signals output from mass air flow, throttle position and engine coolant temperature. The CVVT controller regulates the intake camshaft angle using oil pressure through the OCV. As result, the relative position between the camshaft and the crankshaft becomes optimal, and the engine torque improves, fuel economy improves, exhaust emissions decrease under overall driving conditions.

DTC DESCRIPTION E60E2FAD

When the enable condition is satisfied, The PCM checks that CCV outputs (Voltage level) are observed when OCVs are commanded. When a OCV output failure is detected, the appropriate fail counter is incremented. If the failure threshold is exceeded 5 seconds during one diagnostic test(10second), the test is failed and DTC is stored. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION E721CFB9


Item	Detecting Condition	Possible cause
DTC Strategy	Detects a short to ground or open	
Enable Conditions	No disabling Faults PresentEngine Running11V Ignition Voltage 16V	Poor Connection Open in Power circuit
Threshold value	Short to ground or open circuit	Open or short to ground in Control Circuit
Diagnosis Time	 Continuous (More than 5 seconds failure for every 10 seconds test) 	• OCV • PCM
MIL On Condition	2 Driving Cycles	

FL -167

SPECIFICATION E7D26E5A

Resistance ()	6.7 ~ 7.7 at 20 (68)
----------------	-----------------------

SCHEMATIC DIAGRAM E72F1BD0

UFBG255A

SIGNAL WAVEFORM AND DATA EE81EB08

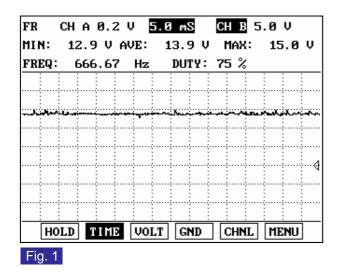
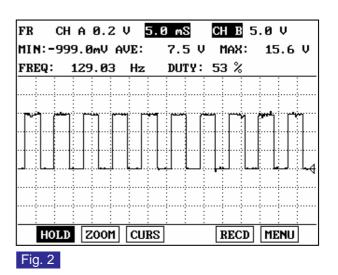



Fig. 1: Idle

Fig. 2: Accelleration

EGRF602G

FL -168 FUEL SYSTEM

The oil control valve is commanded by a pulse-width-modulated signal from the engine control unit. A duty cycle of zero commands the cam phaser to its default position. A duty cycle of 100% commands the phaser to its maximum phased position. When the phaser must be controlled to an intermediate position, the duty cycle is maintained in the region of the 'hold position'. This is a medium duty cycle, usually between 35% and 65%, depending on temperature and voltage conditions.

MONITOR DTC STATUS E8C6CF8D

- Check DTC Status
 - Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu.
 - 4) Read "DTC Status" parameter.

SGHFL7305L

5) Is "Present" Fault displayed?

Go to "Terminal and connector inspection" procedure.

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

TERMINAL AND CONNECTOR INSPECTION EE358500

- 1. Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- 2. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

FL -169

YES

Repair as necessary and go to "Verification of Vehicle Repair" procedure

NO

Go to " Power Circuit Inspection " procedure.

POWER CIRCUIT INSPECTION E7C2AC9A

- 1. IG "OFF" & Disconnect OCV(B2) connector.
- 2. IG "ON" & ENG "OFF".
- Measure voltage between terminal 1 of OCV(B2) harness connector and chassis ground.

Specification: B+

4. Is the measured voltage within specification?

YES

Go to "Control Circuit Inspection " procedure.

NO

Check fuse between Main Relay and OCV is open or not installed.

Check open in power circuit between Main Relay and OCV power circuit.

Repair or repalce as necessary and then go to "Verification of Vehicle Repair" procedure.

CONTROL CIRCUIT INSPECTION E3DD9898

- 1. Check short to ground in harness
 - 1) IG "OFF" and disconnect OCV connector.
 - 2) IG "ON" & ENG "OFF".
 - 3) Measure resistance between terminal 2 of OCV harness connector and chassis ground.

Specification: Infinite

4) Is the measured resistance within specification?

YES

Go to "Check open in harness" as follows

NO

Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

- 2. Check open in harness
 - 1) IG "OFF" and disconnect OCV and PCM connector.

FL -170 FUEL SYSTEM

 Measure resistance between terminal 2 of OCV harness connector and terminal 61 of PCM harness connector tor(C144-B).

Specification: Approx. below 1

3) Is the measured resistance within specification?

Go to "Component Inspection" procedure.

Repair or replace as necessary and then go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION E430454C

- Check OCV
 - 1) IG "OFF" and disconnect OCV connector.
 - 2) Measure resistance between terminal 1 and 2 of OCV. (Component Side)

Specification: 6.7 ~ 7.7 at 20 (68

SBLF26442L

3) Is the measured resistance within specification?

YES

4) Go to "OCV Actuation Test" as follows.

NO

Substitute with a known - good OCV and check for proper operation. If the problem is corrected, replace OCV and go to "Verification of Vehicle Repair" procedure.

- 2. OCV Actuation Test
 - 1) Connect scantool and IG "ON"
 - 2) Select "OCV" on the Actuation Test
 - Activate "OCV" by pressing "STRT(F1)" key (should hear a faint click from Oil Control solenoid Valve)
 - 4) Repeat this procedure 4 or 5 times to ensure reliability.

FL -171

OIL CONTRO	L VALVE
DURAT I ON	UNTIL STOP KEY
METHOD	ACTIVATION
CONDITION	IG. KEY ON ENGINE OFF
	TRT1, IF YOU ARE READY !

EGRF602W

5) Does OCV generate click sound during acutation test?

YES

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. Before or after testing PCM on the vehicle, use this function before reusing the PCM

Substitute with a known - good OCV and check for proper operation. If the problem is corrected, replace OCV and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR EED17FD8

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

YES

System performing to specification at this time. Clear the DTC

NO

Go to the applicable troubleshooting procedure.

FL -172 FUEL SYSTEM

DTC P0083 INTAKE VALVE CONTROL SOLENOID CIRCUIT HIGH (BANK 2)

COMPONENT LOCATION E5706769

Refer to DTC P0082.

GENERAL DESCRIPTION FFAARE78

Refer to DTC P0082.

DTC DESCRIPTION EE6F6265

When the enable condition is satisfied, The PCM checks that OCV outputs (Voltage level) are observed when OCVs are commanded. When a OCV output failure is detected, the appropriate fail counter is incremented.

If the failure threshold is exceeded 5 seconds during one diagnostic test(10second), the test is failed and DTC is stored.

MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION EBE82615

Item	Detecting Condition	Possible cause
DTC Strategy	Detects a short to battery	
Enable Conditions	 No disabling Faults Present Engine Running 11V Ignition Voltage 16V 	Poor ConnectionShort to battery in Control
Threshold value	Short to battery	Circuit
Diagnosis Time	Continuous (More than 5 seconds failure for every 10 seconds test)	• OCV • PCM
MIL On Condition	2 Driving Cycles	

SPECIFICATION E4CE2EC0

Resistance () 6.7 ~ 7.7 at 20 (68)

SCHEMATIC DIAGRAM EAC248CE

Refer to DTC P0082.

SIGNAL WAVEFORM AND DATA E5E3710D

Refer to DTC P0082.

MONITOR DTC STATUS E5AA9C5D

Refer to DTC P0082.

TERMINAL AND CONNECTOR INSPECTION E4786E18

Refer to DTC P0082.

FL -173

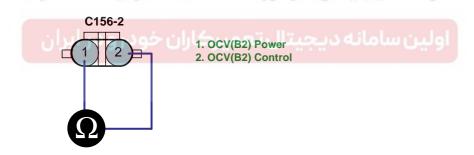
CONTROL CIRCUIT INSPECTION E449F7BA

- 1. IG "OFF" and Disconnect OCV connector.
- 2. Measure resistance between terminal 1 and 2 of OCV harness connector.

Specification: Infinite

3. Is the measured resistance within specification?

Go to "Component Inspection" procedure.


NO

Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION E99C75E

- 1. Check OCV
 - 1) IG "OFF" and disconnect OCV connector.
 - 2) Measure resistance between terminal 1 and 2 of OCV. (Component Side)

Specification: 6.7 ~ 7.7 at 20 (68)

SBLF26442L

3) Is the measured resistance within specification?

YES

4) Go to "OCV Actuation Test" as follows.

NO

Substitute with a known - good OCV and check for proper operation. If the problem is corrected, replace OCV and go to "Verification of Vehicle Repair" procedure.

- OCV Actuation Test
 - Connect scantool and IG "ON"
 - 2) Select "OCV" on the Actuation Test
 - Activate "OCV" by pressing "STRT(F1)" key (should hear a faint click from Oil Control solenoid Valve)

FL -174 FUEL SYSTEM

4) Repeat this procedure 4 or 5 times to ensure reliability.

OIL CONTRO	L VALVE
DURAT I ON	UNTIL STOP KEY
METHOD	ACTIVATION
CONDITION	IG.KEY ON ENGINE OFF
	TRT1, IF YOU ARE READY !

EGRE602W

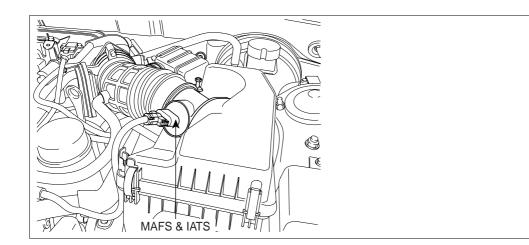
5) Does OCV generate click sound during acutation test?

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. Before or after testing PCM on the vehicle, use this function before reusing the PCM

NO اولین سامانه دیجیتال تعمیرکاران خودر و در ایا

Substitute with a known - good OCV and check for proper operation. If the problem is corrected, replace OCV and go to "Verification of Vehicle Repair" procedure.


VERIFICATION OF VEHICLE REPAIR ED7C8C63

Refer to DTC P0082.

FL -175

DTC P0101 MASS OR VOLUME AIR FLOW CIRCUIT RANGE/PERFORMANCE

COMPONENT LOCATION E3E1DC1/

SGHFL7313N

GENERAL DESCRIPTION EEC6F7B7

The Delphi MAF Sensor is an air mass flowmeter, which operates on the principle of hot film anemometry. A heated element is placed within the air stream, and maintained at a constant temperature above the air temperature. The amount of electrical power required to maintain the heated element at the proper temperature is a direct function of the flow rate of the air mass past the element. PCM uses this information to determine the injection duration and ignition timing for the desired air/fuel ratio.

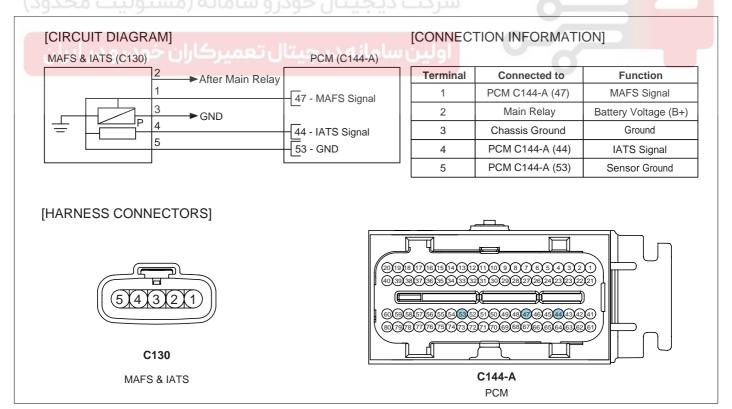
DTC DESCRIPTION E8CB67C2

The difference between values coming from the MAF Sensor and those are calculated is analyzed. This difference, or error, is then compared to high and low limit calibration values, which are functions of engine speed. PCM compares the difference between MAFS output and calculated flow rate value while enable condition is met.

If the acutal air flow is higher or lower than calculated value(threshold) for more than 2min. PCM determines that a fault exists and a DTC is stored. MIL(Malfunction Indicator Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION ED027155

Item	Detecting Condition	Possible cause	
DTC Strategy	The MAF Rationality Diagnostic compares the difference between MAF Sensor output and calculated flow rate value to a calibration value		
Enable Conditions	 Engine Coolant Temperature 60 (Fully Warmed up state) 600rpm < Engine Speed < 3000rpm 	Clogged air cleanerMAFS	
Threshold value	Acutal Air Mass Value is higher or lower than calculated value		
Diagnosis Time	Continuous (2 min.)		
MIL On Condition	2 Driving Cycles		

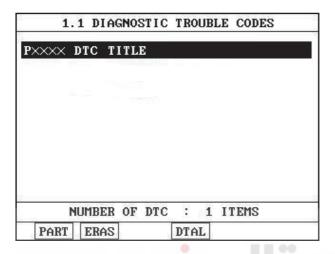

FL -176 **FUEL SYSTEM**

SPECIFICATION

Air Flow (kg/h)	Frequency (Hz)
12.6 kg/h	2,617Hz
18.0 kg/h	2,958Hz
23.4 kg/h	3,241Hz
32.4 kg/h	3,653Hz
43.2 kg/h	4,024Hz
57.6 kg/h	4,399Hz
72.0 kg/h	4,704Hz
108.0 kg/h	5,329Hz
144.0 kg/h	5,897Hz
198.0 kg/h	6,553Hz
270.0 kg/h	7,240Hz
360.0 kg/h	7,957Hz
486.0 kg/h	8,738Hz
666.0 kg/h	9,644Hz
900.0 kg/h	10,590Hz

SCHEMATIC DIAGRAM EE7C78BB

SGHF17008N


MONITOR DTC STATUS

Check DTC Status

FL -177

SEPFL6413N

- 1) Connect scantool to Data Link Connector(DLC).
- 2) IG "ON".
- 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu.
- 4) Read "DTC Status" parameter.

5) Is "Present" Fault displayed?

YES

Go to "Component Inspection" procedure.

لین سامانه دیجیتال تعمیرکاران خودر NO

Fault is intermittent caused by PCM memory was not cleared after repair. Erase DTC and drive the vehicle to satisfy the enable condition then, go to "Component Inspection" procedure.

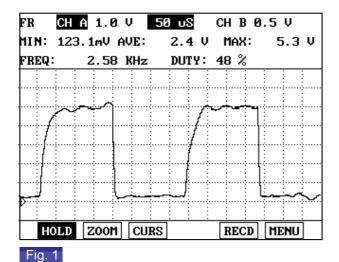
COMPONENT INSPECTION EB429658

- 1. Visual Inspection
 - 1) Check that MAFS is damaged, contaminated or deformed.
 - 2) Check tha air cleaner is clogged.
 - 3) Has a problem been found?

YES

Repair or replace as necessary and then go to "Verification of Vehicle Repair" procedure.

NO


Go to "Check MAFS" as follows

- 2. Check MAFS
 - 1) IG "OFF" and install a scantool
 - 2) ENG "ON" and monitor "MAFS" data on the service data.

FL -178 FUEL SYSTEM

B) Monitor signal waveform at terminal 1 of MAFS with scantool.

Specification: Signal waveform will be displayed as follows. (Be aware that the signal of MAFS is not voltage display but frequency display.)

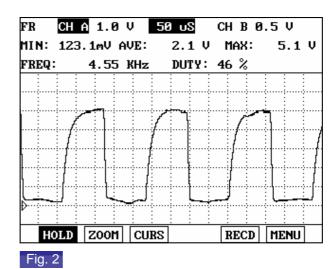


Fig. 1: Idle

Fig. 2: Acceleration

د پښاد صوداد

EGRF603D

4) Are both service data and signalwave form dispayed correctly?

YES

Go to "Verification of Vehicle Repair" procedure.

NO

Substitute with a known - good MAFS and check for proper operation. If the problem is corrected, replace MAFS and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR EEF12858

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

YES

System performing to specification at this time. Clear the DTC

NO

Go to the applicable troubleshooting procedure.

FL -179

DTC P0102 MASS OR VOLUME AIR FLOW CIRCUIT LOW INPUT

COMPONENT LOCATION EBD1FABE

Refer to DTC P0101.

GENERAL DESCRIPTION EDB59B02

Refer to DTC P0101.

DTC DESCRIPTION EC745EFD

If PCM detects that frequency signal of MAFS is lower than 1000 Hz for more than 75 second during one dignostic test (125 second) while enable condition is met PCM determines that a fault exists and a DTC is stored. MIL (Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION EDC58CA4

Item	Detecting Condition	Possible cause
DTC Strategy	Compares the airmeter input frequency to a low limit	
Enable Conditions	 Engine Speed 500 rpm Engine Running Time 5 second Ignition Voltage 11V 	 Poor Connection Open or short in harness MAFS PCM
Threshold value	MAF frequency signal < 1000Hz	
Diagnosis Time	Continuous (More than 75 second failure for every 125 second tests)	
MIL On Condition	2 Driving Cycles	

FL -180 **FUEL SYSTEM**

SPECIFICATION

Air Flow (kg/h)	Frequency (Hz)	
12.6 kg/h	2,617Hz	
18.0 kg/h	2,958Hz	
23.4 kg/h	3,241Hz	
32.4 kg/h	3,653Hz	
43.2 kg/h	4,024Hz	
57.6 kg/h	4,399Hz	
72.0 kg/h	4,704Hz	
108.0 kg/h	5,329Hz	
144.0 kg/h	5,897Hz	
198.0 kg/h	6,553Hz	
270.0 kg/h	7,240Hz	
360.0 kg/h	7,957Hz	
486.0 kg/h	8,738Hz	
666.0 kg/h	9,644Hz	
900.0 kg/h	10,590Hz	

SCHEMATIC DIAGRAM E395EAB4

Refer to DTC P0101.

MONITOR DTC STATUS E4FACF01

Refer to DTC P0101.

TERMINAL AND CONNECTOR INSPECTION E7503B1B

Refer to DTC P0101.

POWER CIRCUIT INSPECTION E0632F6E

- IG "OFF" and Disconnect MAFS connector.
- IG "ON" & ENG "OFF"
- Measure voltage between terminal 2 of MAFS harness connector and chassis ground

Specification: B+

Is the measured voltage within specification?

YES

Go to "Signal Circuit Inspection" Procedure.

NO

FL -181

Check fuse between MAFS and main relay is open or not installed.

Repair open in power harness between MAFS and main relay and go to "Verification of Vehicle Repair" procedure.

SIGNAL CIRCUIT INSPECTION E600E271

- 1. Check voltage
 - 1) IG "OFF" and disconnect MAFS connector.
 - 2) IG "ON' & ENG "OFF".
 - 3) Measure voltage between terminal 1 of MAFS harness connector and chassis ground.

Specification: Approx. 5V

4) Is the measured voltage within specification?

Go to "Ground circuit inspection" procedure.

NO

If the measured voltage is "0", go to "Check open in harness" as follows. If the measured voltage is over "5V", go to "Check short to battery in harness" as follows.

- 2. Check short to battery in harness
 - 1) IG "OFF" and disconnect MAFS and PCM connector.
 - 2) Measure resistance between terminal 1 and 2 of MAFS harness connector.
 - 3) Measure resistance between terminal 1 and 4 of MAFS harness connector.

Specification: Infinite

4) Is the measured resistance within specification?

Go to "Check short to ground in harness" as follows.

NO

Repair short to battery in harness and go to "Verification of Vehicle Repair" procedure.

- Check short to ground in harness
 - 1) IG "OFF" and disconnect MAFS and PCM connector.
 - Measure resistance between terminal 1 of MAFS harness connector and chassis ground.

Specification: Infinite

3) Is the measured resistance within specification?

YES

FL -182 FUEL SYSTEM

Go to "Check open in harness" as follows.

Repair short to ground in harness and go to "Verification of Vehicle Repair" procedure.

- 4. Check open in harness
 - 1) IG "OFF" and disconnect MAFS and PCM connector.
 - Measure resistance between terminal 1 of MAFS harness connector and terminal 47 of PCM harness connector tor(C144-A).

Specification: Approx. below 1

3) Is the measured resistance within specification?

YES

Go to "Ground circuit Inspection" procedure.

NO

Repair open in harness and go to "Verification of Vehicle Repair" procedure.

GROUND CIRCUIT INSPECTION E21F603

- 1. IG "OFF" and disconnect MAFS connector and then turn the ignition ON.
- 2. Measure voltage between terminal 1 of MAFS harness connector and chassis ground.
- 3. Measure voltage between terminal 1 and 3 of MAFS harness connector.

Specification: Voltage difference between Measurement "A" and "B" is below 200mV.

4. Is the measured voltage within specification?

YES

Go to "Component Inspection" procedure.

NO

Repair contact resistance or open in harnesss and then go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION E26C1291

- 1. Visual Inspection
 - 1) Check that MAFS is damaged, contaminated or deformed.
 - 2) Has a problem been found?

YES

Repair or replace as necessary and then go to "Verification of Vehicle Repair" procedure.

FL -183

NO

Go to "Check MAFS" as follows

- Check MAFS
 - 1) IG "OFF" and install a scantool
 - 2) ENG "ON" and monitor "MAFS" data on the service data.
 - 3) Monitor signal waveform at terminal 1 of MAFS with scantool.

Specification: Signal waveform will be displayed as follows. (Be aware that the signal of MAFS is not voltage display but frequency display.)

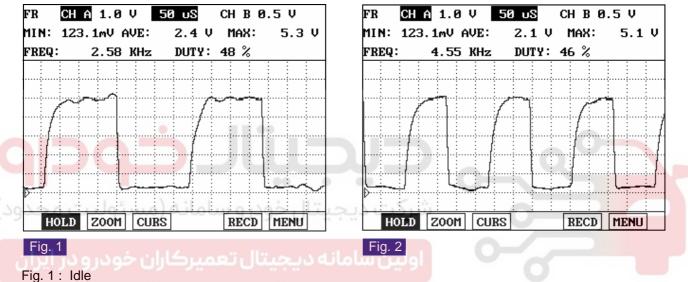


Fig. 2: Acceleration

EGRF603D

4) Are both service data and signalwave form dispayed correctly?

YES

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

| NOTE

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized

Before or after testing PCM on the vehicle, use this function before reusing the PCM

Substitute with a known - good MAFS and check for proper operation. If the problem is corrected, replace MAFS and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR ED514C24

Refer to DTC P0101.

FL -184 FUEL SYSTEM

DTC P0103 MASS OR VOLUME AIR FLOW CIRCUIT HIGH INPUT

COMPONENT LOCATION EAB16B31

Refer to DTC P0101.

GENERAL DESCRIPTION E5CA50A7

Refer to DTC P0101.

DTC DESCRIPTION E04F4FD3

If PCM detects that frequency signal of MAFS is higher thatn 11900 Hz for more than 75 second during 125 second dignostic test while enable condition is met, PCM determines that a fault exists and a DTC is stored. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION E77FB10F

Item	Detecting Condition	Possible cause
DTC Strategy	Compares the airmeter input frequency to a high limit	
Enable Conditions	 Engine Speed 500 rpm Engine Running Time 5 second Ignition Voltage 11V 	Noise
Threshold value	MAF frequency signal 11900Hz	• MAFS • PCM
Diagnosis Time	Continuous (More than 75 second failure for every 125 second tests)	PCIVI
MIL On Condition	2 Driving Cycles	

10,590Hz

DTC TROUBLESHOOTING PROCEDURES

FL -185

SPECIFICATION E59A5794

Air Flow (kg/h)	Frequency (Hz)
12.6 kg/h	2,617Hz
18.0 kg/h	2,958Hz
23.4 kg/h	3,241Hz
32.4 kg/h	3,653Hz
43.2 kg/h	4,024Hz
57.6 kg/h	4,399Hz
72.0 kg/h	4,704Hz
108.0 kg/h	5,329Hz
144.0 kg/h	5,897Hz
198.0 kg/h	6,553Hz
270.0 kg/h	7,240Hz
360.0 kg/h	7,957Hz
486.0 kg/h	8,738Hz
666.0 kg/h	9,644Hz

SCHEMATIC DIAGRAM EB7E9A5E

Refer to DTC P0101.

MONITOR DTC STATUS E978E450

Refer to DTC P0101.

TERMINAL AND CONNECTOR INSPECTION E15A4C61

Refer to DTC P0101.

GROUND CIRCUIT INSPECTION EFEB55F0

- 1. IG "OFF"
- 2. Disconnector MAFS connector and then turn the ignition ON.
- 3. Measure the voltage between terminal 1 of MAFS harness connector.
- 4. Measure the voltage between terminal 1 and 3 of MAFS harness connector.

Specification: Voltage difference and "A" and B" is below 200mV

5. Is the measured voltage within the specification?

YES

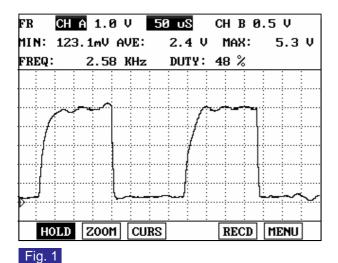
Go to "Component Inspection".

FL -186 FUEL SYSTEM

After repairing or replacing contact resistance in ground circuit and open in the MAFS circuit, go to "Verification and Vehicle Repair".

COMPONENT INSPECTION E71AD84F

- 1. Visual Inspection
 - 1) Check that MAFS is damaged, contaminated or deformed.
 - 2) Has a problem been found?


Repair or replace as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

Go to "Check MAFS" as follows

- 2. Check MAFS
 - 1) IG "OFF" and install a scantool
 - 2) ENG "ON" and monitor "MAFS" data on the service data.
 - Monitor signal waveform at terminal 1 of MAFS with scantool.

Specification: Signal waveform will be displayed as follows. (Be aware that the signal of MAFS is not voltage display but frequency display.)

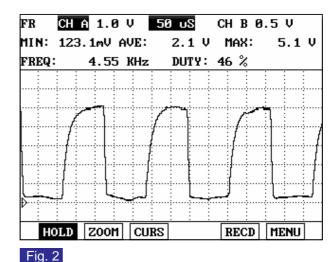


Fig. 1: Idle

Fig. 2: Acceleration

EGRF603D

4) Are both service data and signalwave form dispayed correctly?

YES

FL -187

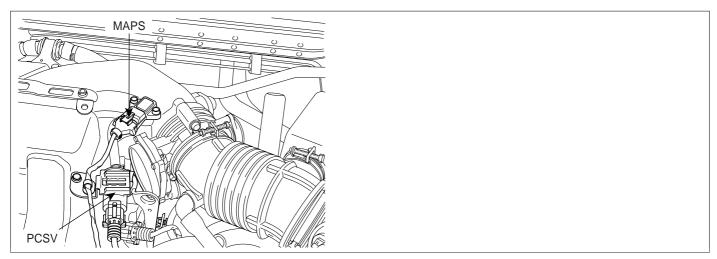
Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM.

Before or after testing PCM on the vehicle, use this function before reusing the PCM

Substitute with a known - good MAFS and check for proper operation. If the problem is corrected, replace MAFS and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR E2422F2


Refer to DTC P0101.

FL -188 FUEL SYSTEM

DTC P0105 MANIFOLD ABSOLUTE PRESSURE/BAROMETRIC PRESSURE CIRCUIT

COMPONENT LOCATION E18FEC00

SGHFL7314N

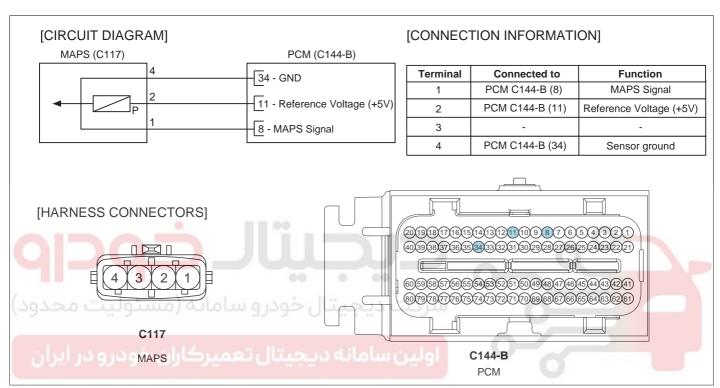
GENERAL DESCRIPTION E6DF6E01

The amount of intake air flow must be inputted to PCM in order to determine the fuel injection quantity. To measure the pressure inside of intake manifold, MAFS is used at idle and MAPS is required during acceleration. MAPS(Manifold Absolute Pressure) calculates the amount of air indirectly as measuring the pressure inside of intake manifold. This mechanism is also called Speed-Density Type.MAPS transfers analog output signal which is proportional to the change of intake manifold pressure, then, with this signal and RPM, PCM calculates the amount of intake air flow. MAPS is mounted on surge tank to measure the pressure inside of intake manifold, and it consists of a piezo electric element and hybrid IC which amplifies output signal from the element. A piezo electric element is a sort of a diaphragm using piezo electric effect. One side of the diaphragm is surrounded with vacuum chamber while intake pressure is applied to the other side. Thus, signals are output by the transformation of diaphragm according to the change of pressure inside of intake manifold.

DTC DESCRIPTION E9F44C1A

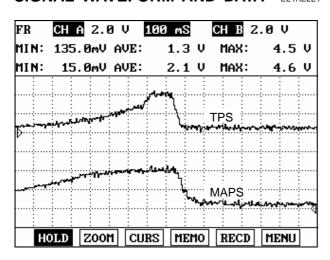
If the signal output of MAP sensor is stuck under enable conditions, PCM determines that a fault exists and a DTC is stored. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION E1D8EE13


Item	Detecting Condition	Possible cause
DTC Strategy	Monitor the MAP sensor's signal	
Enable Conditions	No Disabling Fault PresentShutdown time > 20 minutesEngine running	
Thresh old value	The difference between the signal at key-on and the signal at engine start < 0.5 kPa	Faulty MAPS
Diagnosis Time	For 3 seconds out of 5 seconds	
MIL On Condition	2 driving cycles	

FL -189

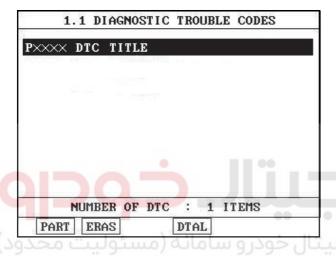
SPECIFICATION E0A30654

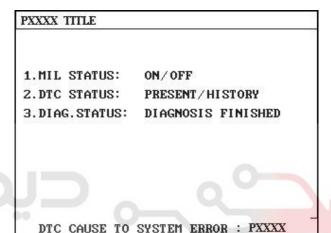

Pressure(kPa)	20	35	60	95	101.32
Voltage(V)	0.789	1.382	2.369	3.75	4
Tolerance(V)	± 0.045				

SCHEMATIC DIAGRAM FRDA27C4

UFBG240A

SIGNAL WAVEFORM AND DATA EE1AE2E


EGRF603O


It is necessary that MAPS should be checked along with TPS. Because The MAP/TPS Rationality Diagnostic is comprised of two tests. A deceleration test is performed to provide a robust method for detection of an altitude compensated MAP value that is too high for the deceleration condition. The second test compares the altitude compensated MAP value to both high and low limits, dependent upon throttle position and engine speed. When the MAP value is out of the threshold range, the MAP/TPS system is determined to be failed.

FL -190 FUEL SYSTEM

MONITOR DTC STATUS EA1F32AD

- 1. Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu
 - 4) Read "DTC Status" parameter.

SCMF16159L

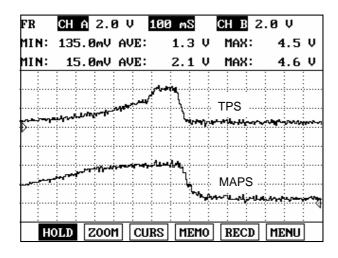
5) Is "Present" Fault displayed?

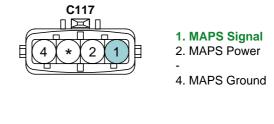
YES

Go to "Component Inspection" procedure.

NO

Fault is intermittent caused by PCM memory was not cleared after repair. Erase DTC and drive the vehicle to satisfy the enable condition then,go to "Component Inspection" procedure.


COMPONENT INSPECTION E5471146


- 1. Check MAPS Performance
 - 1) IG "OFF" and install scantool.
 - 2) Connect probe to MAPS and TPS to check signal waveform by using oscilloscope function.
 - 3) ENG "ON" and monitor signal waveform during acceleration and deceleration.

SPECIFICATION:

Pressure(kPa)	20	35	60	95	101.32
Voltage(V)	0.789	1.382	2.369	3.75	4
Tolerance(V)	± 0.045				

FL -191

SBLF26450L

4) Is the measured signal waveform(MAP/TPS Rationality) O.K?

Go to "Verification of Vehicle Repair" procedure.

Substitute with a known - good MAPS and check for proper operation.

If the problem is corrected, replace MAPS and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR E7F94173

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC.

Go to the applicable troubleshooting procedure.

FL -192 FUEL SYSTEM

DTC P0106 MANIFOLD ABSOLUTE PRESSURE/BAROMETRIC PRESSURE CIRCUIT RANGE/PERFORMANCE

COMPONENT LOCATION E54A27F3

Refer to DTC P0105.

GENERAL DESCRIPTION E449ECE2

Refer to DTC P0105.

DTC DESCRIPTION E744FA8F

PCM compares the difference between MAPS output and calculated MAPS value while enable condition is met. If the acutal MAP value or lower than calculated(threshold) value for 2 min failure during acceleration/deceleration, PCM determines that a fault exists and a DTC is stored. MIL(Malfunction Indicator Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION E7B388FD

Ite	em	Detecting Condition	Possible cause
DTC S	trategy	The MAP reading is compared to expected MAP high and low limits based on engine speed & Throttle Position	
Enable	Case 1	 Engine Coolant Temperature 60 (Fully Warmed up state) 600rpm < Engine Speed < 3000rpm 	
Condi-	ودرو در	- Power Test	O
tions	Case 2	 Altitude compensated MAP < Calculated min. MAP data Altitude compensated MAP > Calculated max. MAP data 	Faulty TPSFaulty MAPS
Thresh- old value	Case 1	Power Test Altitude compensated MAP < Calculated min. MAP data Altitude compensated MAP > Calculated max. MAP data	, and the second
	Case 2	Deceleration Test • Altitude compensated MAP Memorized MAP data	
Diagnos	Diagnosis Time • Continuous (For 2min. in mild tip in - out Driving)		
MIL On 0	Condition	NO MIL ON(DTC only)	

SPECIFICATION E052E7A

Pressure (kPa)	20	35	60	95	101.32
Voltage (V)	0.789	1.382	2.369	3.75	4
Tolerance (V)	± 0.045				

FL -193

SCHEMATIC DIAGRAM E74D56DF

Refer to DTC P0105.

SIGNAL WAVEFORM AND DATA EC93849D

Refer to DTC P0105.

MONITOR DTC STATUS E51A888A

Refer to DTC P0105.

COMPONENT INSPECTION EFE13B22

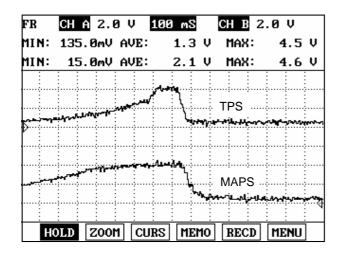
- 1. Check TPS
 - 1) Visually check that TPS is contaminated by foreign materials, deformed, or damaged
 - 2) Has a problem been found?

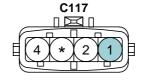
YES

Substitute with a known - good TPS and check for proper operation.

If the problem is corrected, replace TPS and go to "Verification of Vehicle Repair" procedure.

NO


Go to "Check MAPS Performance" as follows.


- 2. Check MAPS Performance
 - 1) IG "OFF" and install scantool.
 - 2) Connect probe to MAPS and TPS to check signal waveform by using oscilloscope function.
 - 3) ENG "ON" and monitor signal waveform during acceleration and deceleration.

SPECIFICATION:

Pressure (kPa)	20	35	60	95	101.32
Voltage (V)	0.789	1.382	2.369	3.75	4
Tolerance (V)	± 0.045				

FL -194 FUEL SYSTEM

- 1. MAPS Signal
- 2. MAPS Power
- 4. MAPS Ground

SBLF26450L

4) Is the measured signal waveform(MAP/TPS Rationality) O.K?

Go to "Verification of Vehicle Repair" procedure.

NO

Substitute with a known - good MAPS and check for proper operation. If the problem is corrected, replace MAPS and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR E5D39FF6

Refer to DTC P0105.

FL -195

DTC P0107 MANIFOLD ABSOLUTE PRESSURE/BAROMETRIC PRESSURE CIRCUIT LOW INPUT

COMPONENT LOCATION EA080E84

Refer to DTC P0105.

GENERAL DESCRIPTION EA49D9E5

Refer to DTC P0105.

DTC DESCRIPTION EBF58AFA

Checking output signals of MAPS every 5 sec. under detecting condition, if an output signal is below 0.25V for more than 2.5 sec., PCM sets P0107. MIL(Malfuction Indication Lamp) turns on when the malfunction lasts till continuous 2 driving cycle.

DTC DETECTING CONDITION E774A59C

Ite	Item Detecting Condition		Possible cause
DTC S	trategy	This code detects a continuous short to low or open in either the signal circuit or the MAP	9
Enable Condi-	Case 1	 No TPS Active Fault Present Ignition Voltage 11V Engine Speed 1000rpm Throttle Position 0% 	Connecting condition
tions	Case 2	 No TPS Active Fault Present Ignition Voltage 11V Engine Speed > 1000rpm Throttle Position 30% 	 Open or short to ground in power circuit Open or short to ground in signal circuit MAPS
Thresho	old value	MAP Signal < 0.25V	• PCM
Diagnos	• Continuous (More than 2.5 seconds failure for every 5 seconds test)		
MIL On (Condition	2 Driving Cycle	

SPECIFICATION EE8B99CF

Pressure (kPa)	20	35	60	95	101.32
Voltage (V)	0.789	1.382	2.369	3.75	4
Tolerance (V)	± 0.045				

SCHEMATIC DIAGRAM E561ED36

Refer to DTC P0105.

SIGNAL WAVEFORM AND DATA E2D72DE2

Refer to DTC P0105.

FL -196 FUEL SYSTEM

MONITOR DTC STATUS E2A51555

Refer to DTC P0105.

TERMINAL AND CONNECTOR INSPECTION E9E408AE

Refer to DTC P0105.

POWER CIRCUIT INSPECTION E58B1205

- 1. IG "OFF"
- 2. Disconnect MAPS connector.
- 3. IG "ON"
- 4. Measure the voltage between terminal 2 of MAPS harness connector and ground.

Specification: Approx. 5V

5. Is the measured voltage within specification?

YES

Go to "Signal Circuit Inspection" of MAPS.

شرکت دیجیتال خودر و سامانه (مسئولیت و NO و

After repairing open or short to ground in circuits and go to "Verification of Vehicle Repair"

SIGNAL CIRCUIT INSPECTION EC17219C

- 1. Check short to ground in harness.
 - 1) IG "OFF"
 - 2) Disconnect MAPS and PCM connector.
 - 3) Measure the resistance between terminal 1 of MAPS harness connector and ground.

Specification: Infinite

4) Is the measured resistance within the specification?

YES

Go to "Check for open circuit" procedure.

NO

After repairing short to ground in harness and go to "Verification of Vehicle Repair"

- 2. Check for open circuit
 - 1) IG "OFF"
 - 2) Disconnect MAPS and PCM connector.

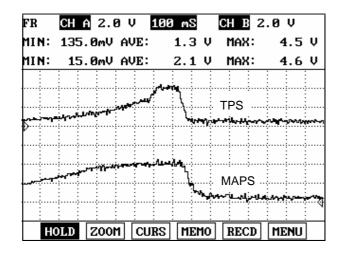
FL -197

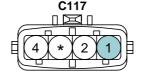
3) Measure the resistance between terminal 1 of MAPS harness connector and terminal 8 of PCM harness connector(C144-B).

Specification: Approx. below 1

4) Is the measured resistance within the specification?

Go to "Component Inspection" procedure.


Repair open in the harness and go to "Verification of Vehicle Repair".


COMPONENT INSPECTION E48DD673

- 1. MAPS performance test
 - 1) IG "OFF"
 - 2) Connect scantool to Data Link Connector(DLC) and select "Oscilloscope" then, connect probes to output signal lines of MAPS and TPS.
 - 3) Start engine and monitor the signal waveforms during accelerating and decelerating

شرکت دیجیتال خودر و سامانه (مسئوا: SPECIFICATON

Pressure (kPa)	20	35	60	95	101.32
ال تعمير کا (Voltage (V) در ايران	0.789	1.382	2.369	3.75	4
Tolerance (V)			± 0.045		

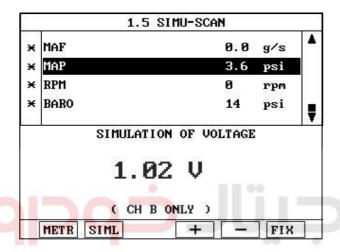
- 1. MAPS Signal
- 2. MAPS Power
- 4. MAPS Ground

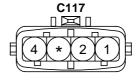
SBLF26450L

4) Is the waveform displayed correctly?(Compare the response time of TPS and MAPS)

YES

Go to "Check PCM".


NO


FL -198 FUEL SYSTEM

After replacing MAPS with new one, if it operates normally, replace MAPS and go to "Verification of Vehicle Repair".

2. Check PCM

- 1) IG "OFF" disconnect MAPS connector
- 2) Connect Scantool and IG "ON" & ENG "OFF"
- 3) Select simulation function on scantool.
- 4) Simulate voltage at terminal 1 of MAPS harness connector.

- 1. MAPS Signal
- 2. MAPS Power
- 4. MAPS Ground

SBLF26454L

5) Does the output voltage response to the change of signal by simulation?

YES

Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage. Repair or replace if necessary and go to "Verification of Vehicle Repair" procedure

NO

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

NOTE

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM.Before or after testing PCM on the vehicle, use this function before reusing the PCM

VERIFICATION OF VEHICLE REPAIR E0A49A4C

Refer to DTC P0105.

FL -199

DTC P0108 MANIFOLD ABSOLUTE PRESSURE/BAROMETRIC PRESSURE CIRCUIT HIGH INPUT

COMPONENT LOCATION EF04FA39

Refer to DTC P0105.

GENERAL DESCRIPTION E0048624

Refer to DTC P0105.

DTC DESCRIPTION E45E5543

Checking output signals of MAPS every 5 sec. under detecting condition, if an output signal is above 4.5V for more than 2.5 sec., PCM sets P0108. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION EB354EAA

Ite	Item Detecting Condition		Possible cause
DTC S	trategy	This code detects a continuous short to high in either the signal circuit or the MAP sensor	00
Enable Condi-	Case 1	 No TPS Active Fault Present Engine Running Time 10sec. Engine Speed 2500rpm Throttle Position 30% 	Connecting condition
tions	Case 2	 No TPS Active Fault Present Engine Running Time 10sec. Engine Speed 2500rpm Throttle Position 40% 	 Short to battery in Signal Circuit Open in Ground Circuit Faulty MAPS
Thresho	old value	MAP Signal 4.5V	Faulty PCM
Diagnos	• Continuous (More than 2.5 seconds failure for every 5 seconds test)		
MIL On (Condition	2 Driving Cycle	

SPECIFICATION E069DE5D

Pressure (kPa)	20	35	60	95	101.32
Voltage (V)	0.789	1.382	2.369	3.75	4
Tolerance (V)	± 0.045				

SCHEMATIC DIAGRAM E9B562AD

Refer to DTC P0105.

SIGNAL WAVEFORM AND DATA EDFB5CB6

Refer to DTC P0105.

FL -200 FUEL SYSTEM

MONITOR DTC STATUS E8C869

Refer to DTC P0105.

TERMINAL AND CONNECTOR INSPECTION E2CD214E

Refer to DTC P0105.

POWER CIRCUIT INSPECTION EB80659C

- 1. IG "OFF"
- 2. Disconnect MAPS connector
- 3. IG "ON"
- 4. Measure the voltage between terminal 2 of MAPS harness connector and ground.

Specification: Approx. 5V

5. Is the measured voltage within specification?

YES

Go to "Ground Circuit Inspection" procedure.

NO

If the voltage is over 5.1V, check short to battery in harness.

Repair or replace as necessary and then, go to "Verification of Vehicle Repair" procedure.

GROUND CIRCUIT INSPECTION E5B448B

- 1. IG "OFF".
- 2. Disconnect MAPS connector.
- 3. IG "ON" & ENG "OFF"
- 4. Measure the voltage between terminal 2 of MAPS harness connector and chassis ground.
- 5. Measure the voltage between terminal 2 and 4 of MAPS harness connector.

Specification: "A" - "B" = : Approx. below 200mV

6. Is the measured voltage within specification?

Go to "Signal Circuit Inspection" procedure.

NO

Repair contact reistance or open in harness and then go to "Verification of Vehicle Repair" procedure.

FL -201

SIGNAL CIRCUIT INSPECTION E71F343E

1. IG "OFF"

2. Disconnect MAPS and PCM connector.

3. Measure resistance between terminal 1 and 2 of MAPS harness connector.

Specification: Infinite

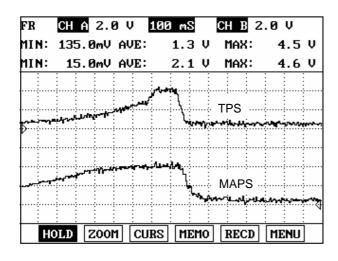
4. Is the measured resistance within specification?

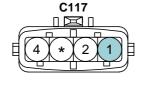
Go to "Component Inspection" procedure.

NO

Repair short to battery in harness and then go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION


1. MAPS performance test


1) IG "OFF"

- Connect scantool to Data Link Connector(DLC) and select "Oscilloscope" then, connect probes to output signal lines of MAPS and TPS.
- 3) Start engine and monitor the signal waveforms during accelerating and decelerating

SPECIFICATION:

Pressure (kPa)	20	35	60	95	101.32
Voltage (V)	0.789	1.382	2.369	3.75	4
Tolerance (V)	± 0.045				

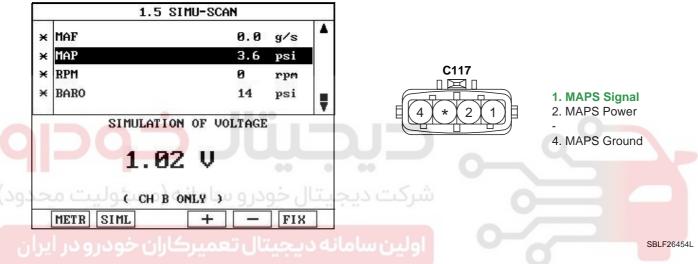
- 1. MAPS Signal
- 2. MAPS Power
- 4. MAPS Ground

SBLF26450L

4) Is the waveform displayed correctly?(Compare the response time of TPS and MAPS)

YES

FL -202 FUEL SYSTEM


Go to "Check PCM".

After replacing MAPS with new one, if it operates normally, replace MAPS and go to "Verification of Vehicle Repair".

2. Check PCM

- 1) IG "OFF" disconnect MAPS connector
- 2) Connect Scantool and IG "ON" & ENG "OFF"
- 3) Select simulation function on scantool.
- 4) Simulate voltage at terminal 1 of MAPS harness connector.

5) Does the output voltage response to the change of signal by simulation?

YES

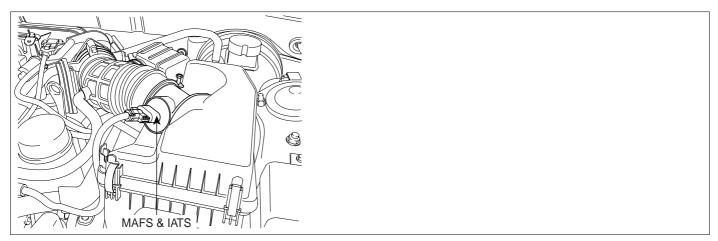
Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage. Repair or replace if necessary and go to "Verification of Vehicle Repair" procedure

NO

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

NOTE

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. Before or after testing PCM on the vehicle, use this function before reusing the PCM


VERIFICATION OF VEHICLE REPAIR E02920B1

Refer to DTC P0105.

FL -203

DTC P0110 INTAKE AIR TEMPERATURE SENSOR1 CIRCUIT

COMPONENT LOCATION E1F1FBB4

SGHFL7313N

GENERAL DESCRIPTION EC4610

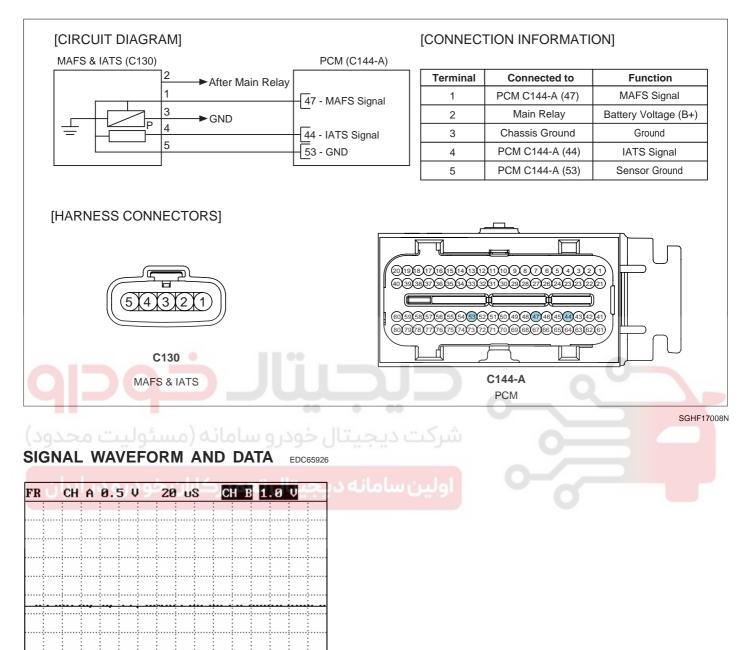
The Intake Air Temperature Sensor (IATS) is installed into the Mass Air Flow Sensor (MAFS). The IATS uses a thermistor whose resistance changes with the temperature. The electrical resistance of the IATS decreases as the temperature increases, and increases as the temperature decreases. The 5 V power source in the PCM is supplied to the IATS via a resistor in the PCM. That is, the resistor in the PCM and the thermistor in the IATS are connected in series. When the resistance value of the thermistor in IATS changes according to the intake air temperature, the signal voltage also changes. Using this signal, the information of the intake air temperature, the PCM corrects basic fuel injection duration and ignition timing.

DTC DESCRIPTION E04A15A7

PCM monitors temperature difference betwen MAX. and MIN IATS in order to detect movement in IATS not only Start Test but Drive Test while enable condition is met. If PCM detects intake air temperature changes less than 5.4 °F PCM determines that a fault exists and a DTC is stored. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

FL -204 **FUEL SYSTEM**

DTC DETECTING CONDITION EDE8BF3E


Ite	em	Detecting Condition	Possible cause	
DTC	Case 1	 Start Test: Monitors the difference between max and min IAT in order to detect movement in IAT for a certain time. 		
Strategy	Case 2	 Drive test: Performs the max and min delta check while driving under load for a length of time followed by an idle for a certain time. 		
Enable C	Conditions	 Engine soak time > 360min Engine running No fault present IAT stored previous trip No IAT Tests pending 	• Faulty IATS	
Thresh	Case 1	• Max IAT - Min IAT 3 (5.4 °F)		
old value	00			
MIL On (Condition	NO MIL ON(DTC only)		

SPECIFICATION ECCAAB4F

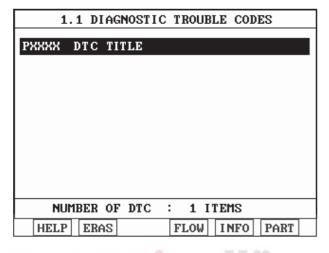
SPECIFICATION ECCAAB	4F		- 0-
Temp. (/)	Resistance (k)	Temp. (/)	Resistance (k)
-40(-40)	95.95 ~ 105.78	20(68)	3.42 ~ 3.61
-20(-4)	27.4 ~ 29.77	40(104)	1.43 ~ 1.5
0(32)	9.08 ~ 9.72	60(140)	0.66 ~ 0.69
ان خود (50) 10 در	5.49 ~ 5.83	80(<mark>1</mark> 76)	0.33 ~ 0.34

FL -205

SCHEMATIC DIAGRAM EFF2E64F

EGRF604E

The output signals of IATS & ECTS change smoothly without any rapid changes. Those have almost same characteristic signal during the early period after start. It means that the temperatures of intake air and engine coolant are depended on the temperature of atmosphere. Meanwhile, during the warming up, the output signal of ECTS is going up increasingly. but, the output signal of IATS changes a little bit. even it may not change almost. It means that the heat of engine does not affect on the temperature of intake air.


MONITOR DTC STATUS E5ACF8D4

- Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).

GND

FL -206 FUEL SYSTEM

- 2) IG "ON".
- 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu.
- 4) Read "DTC Status" parameter.

PXXXX DTC TITLE

1.MIL STATUS: ON/OFF
2.DTC STATUS: PRESENT/HISTORY
3.DIAG.STATUS: DIAGNOSIS FINISHED!

SGHFL7305L

5) Is "Present" Fault displayed?

YES

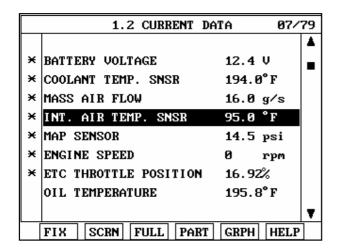
Go to "Component Inspection" procedure.

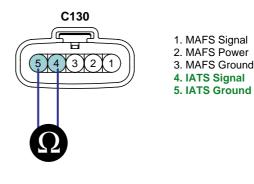
NO

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair"

COMPONENT INSPECTION E5BDDD82

1. Check resistance of IATS


procedure.


- 1) IG "OFF" and disconnect IATS connector.
- 2) Measure resistance between terminal 4 and 5 of IATS connector after checking out the temperature of IATS with scantool

SPECIFICATION:

Temp. (/)	Resistance (k)	Temp. (/)	Resistance (k)
-40(-40)	95.95 ~ 105.78	20(68)	3.42 ~ 3.61
-20(-4)	27.4 ~ 29.77	40(104)	1.43 ~ 1.5
0(32)	9.08 ~ 9.72	60(140)	0.66 ~ 0.69
10(50)	5.49 ~ 5.83	80(176)	0.33 ~ 0.34

FL -207

SBLF26457L

3) Is the measured resistance within specification?

Go to "Verification of Vehicle Repair" procedure.

NO

Substitute with a known - good IATS and check for proper operation. If the problem is corrected, replace IATS and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR EA27D8DD

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

YES

System performing to specification at this time. Clear the DTC

NO

Go to the applicable troubleshooting procedure.

FL -208 FUEL SYSTEM

DTC P0111 INTAKE AIR TEMPERATURE SENSOR1 CIRCUIT RANGE/PERFORMANCE

COMPONENT LOCATION EFBC1B93

Refer to DTC P0110.

GENERAL DESCRIPTION E11FC3A4

Refer to DTC P0110.

DTC DESCRIPTION EE4AAC28

PCM monitors temperature changes resulting from soaking the vehicle. Therefore, Coolant temperature and Intake temperature should be changed. If PCM detects intake air temperature correlated to coolant temperature does not change PCM determines that a fault exists and a DTC is stored. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION E01E7220

Ite	em	Detection condition	Possible cause
DTC	Case 1	Monitors the difference between the startup coolant and IAT values	
Strategy	Case 2	Monitors the difference between the startup IAT and coolant values	
Enable Condi-	Case 1	 Engine soak time 360min Engine running No faults present IAT stored previous trip Startup Coolant Temperature > -20°C Airflow > 15 g/s Vehicle speed > 40kph 	
tions	Case 2	 Engine soak time 360min Engine running No faults present IAT stored previous trip Airflow > 15 g/s Vehicle speed > 40kph 	• IATS
Thresh old	Case 1	Startup Coolant - Startup IAT 30°C	
value	Case 2	Startup IAT - Startup Coolant 20°C	
Diagnos	sis Time	Continuous (More than 1.25 second failure)	
MIL On 0	Condition	NO MIL ON(DTC only)	

FL -209

SPECIFICATION E5375A78

Temp. (/)	Resistance (k)	Temp. (/)	Resistance (k)
-40(-40)	95.95 ~ 105.78	20(68)	3.42 ~ 3.61
-20(-4)	27.4 ~ 29.77	40(104)	1.43 ~ 1.5
0(32)	9.08 ~ 9.72	60(140)	0.66 ~ 0.69
10(50)	5.49 ~ 5.83	80(176)	0.33 ~ 0.34

SCHEMATIC DIAGRAM E8EBB710

Refer to DTC P0110.

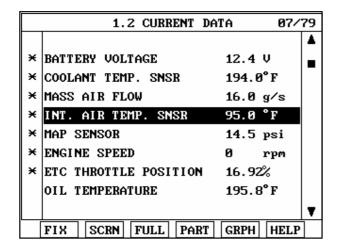
SIGNAL WAVEFORM AND DATA EBD999F0

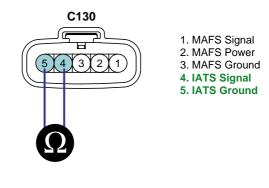
Refer to DTC P0110.

MONITOR DTC STATUS EF9AABEE

Refer to DTC P0110.

COMPONENT INSPECTION EBF84070


- Check resistance of IATS
 - 1) IG "OFF" and disconnect IATS connector.
 - 2) Measure resistance between terminal 4 and 5 of IATS connector after checking out the temperature of IATS with scantool


SPECIFICATION:

Temp. (/)	Resistance (k)	Temp. (/)	Resistance (k)
-40(-40)	95.95 ~ 105.78	20(68)	3.42 ~ 3.61
-20(-4)	27.4 ~ 29.77	40(104)	1.43 ~ 1.5
0(32)	9.08 ~ 9.72	60(140)	0.66 ~ 0.69
10(50)	5.49 ~ 5.83	80(176)	0.33 ~ 0.34

WWW.DIGITALKHODRO.COM

FL -210 FUEL SYSTEM

SBLF26457L

3) Is the measured resistance within specification?

Go to "Verification of Vehicle Repair" procedure.

NO

Substitute with a known - good IATS and check for proper operation. If the problem is corrected, replace IATS and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR EA976872

Refer to DTC P0110.

FL -211

DTC P0112 INTAKE AIR TEMPERATURE SENSOR1 CIRCUIT LOW INPUT

COMPONENT LOCATION ED7F61A1

Refer to DTC P0110.

GENERAL DESCRIPTION E96A0023

Refer to DTC P0110.

DTC DESCRIPTION EA9AC1F1

Checking output signals of IATS every 20 sec. under detecting condition, if an ouput signal is below 0.1V for more than 10 sec., PCM sets P0112. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION E1119D2B

Ite	em	Detecting Condition	Possible Cause
DTC S	trategy	 This code detects a continuous short to ground in either the signal circuit or the sensor 	00
Enable Condi-	Case 1	 Engine running No Vehicle speed sensor fault Vehicle speed 50kph(30mph) 	
tions	Case 2	Engine running time 120 sec. or Time from IG "OFF" to IG "ON" 360 min.	Poor connectionShort to ground in harnessIATS
Thresho	old value	Intake air temperature sensor's voltage 0.1V	• PCM
Diagnos	sis Time	Continuous (More than 10 seconds failure for every 20 seconds test)	
MIL On 0	Condition	2 Driving Cycles	

SPECIFICATION EE59E922

Temp. (/)	Resistance (k)	Temp. (/)	Resistance (k)
-40(-40)	95.95 ~ 105.78	20(68)	3.42 ~ 3.61
-20(-4)	27.4 ~ 29.77	40(104)	1.43 ~ 1.5
0(32)	9.08 ~ 9.72	60(140)	0.66 ~ 0.69
10(50)	5.49 ~ 5.83	80(176)	0.33 ~ 0.34

SCHEMATIC DIAGRAM E8C21393

Refer to DTC P0110.

SIGNAL WAVEFORM AND DATA EF735657

Refer to DTC P0110.

FL -212 FUEL SYSTEM

MONITOR DTC STATUS EBOA3C49

Refer to DTC P0110.

TERMINAL AND CONNECTOR INSPECTION E6F752FA

Refer to DTC P0110.

SIGNAL CIRCUIT INSPECTION EF8631B

- 1. Check voltage
 - 1) IG "OFF" and disconnect IATS connector.
 - 2) IG "ON" and ENG "OFF"
 - Measure voltage between terminal 4 of IATS harness connector and chassis ground.

Specification: Approx. 5V

4) Is the measured voltage within specification?

YES

Go to "Component Inspection" procedure.

کت دیجیتال خودر و سامانه (مسئولی<mark>- No-</mark>

Go to " Check short to ground in harness" procedure.

- Check short to ground in harness
 - IG "OFF" and disconnect IATS connector and PCM connector.
 - 2) Measure resistance between terminal 4 of IATS harness connector and chassis ground.
 - Measure resistance between terminals 4 and 5 of IATS harness connector.
 - 4) Measure resistance between terminals 4 and 3 of IATS harness connector.

Specification: Infinite

5) Is the measured resistance within specification?

YES

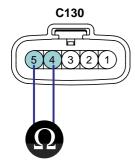
Go to "Component inspection" procedure.

NO

Repair short to ground in harness and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION FREEDRISA

- Check IATS
 - 1) IG "OFF" and disconnect IATS connector.


FL -213

SBLF26460L

2) Measure resistance between teminals 4 and 5 of IATS connector.(Component side)

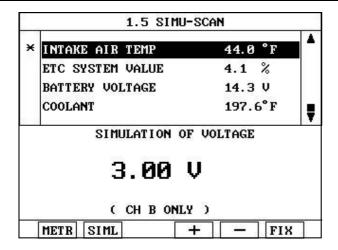
SPECIFICATION:

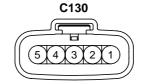
Temp. (/)	Resistance (k)	Temp. (/)	Resistance (k)
-40(-40)	95.95 ~ 105.78	20(68)	3.42 ~ 3.61
-20(-4)	27.4 ~ 29.77	40(104)	1.43 ~ 1.5
0(32)	9.08 ~ 9.72	60(140)	0.66 ~ 0.69
10(50)	5.49 ~ 5.83	80(176)	0.33 ~ 0.34

- 1. MAFS Signal
- 2. MAFS Power
- 3. MAFS Ground
- 4. IATS Signal
- 5. IATS Ground

- 3) Is the measured resistance within specification?
 - YES

Go to "Check PCM" as follows.




Substitute with a known - good IATS and check for proper operation. If the problem is corrected, replace IATS and go to "Verification of Vehicle Repair" procedure.

2. Check PCM

- 1) IG "OFF" and connect scantool.
- 2) Disconnect IATS connector and connect probe to terminal 4 of IATS harness connector.
- 3) IG "ON" and ENG "OFF" and select the simulation function on scantool.
- 4) Simulate voltage at terminal 4 of IATS harness connector.

FL -214 FUEL SYSTEM

- 1. MAFS Signal
- 2. MAFS Power
- 3. MAFS Ground
- 4. IATS Signal
- 5. IATS Ground

SBLF26461L

5) Does the signal value of IAT sensor change according to simulation voltage?

Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

NO

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. Before or after testing PCM on the vehicle, use this function before reusing the PCM.

VERIFICATION OF VEHICLE REPAIR E3CF75D6

Refer to DTC P0110.

FL -215

DTC P0113 INTAKE AIR TEMPERATURE SENSOR1 CIRCUIT HIGH INPUT

COMPONENT LOCATION EB30B267

Refer to DTC P0110.

GENERAL DESCRIPTION EB3FEAFD

Refer to DTC P0110.

DTC DESCRIPTION E18BFBC3

Checking output signals of IATS every 20 sec. under detecting condition, if an ouput signal is over 4.9V for more than 10 sec., PCM sets P0113. MIL(Malfunction Indicator Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION E836561F

Item	Detecting Condition	Possible cause
DTC Strategy	This code detects a continuous short to high in either the signal circuit or the sensor	
Enable Conditions	 No vehicle speed sensor fault No ECTS fault No MAFS fault Vehicle speed 25kph(9.3mph) Intake airflow 15 g/s ECT 50 (122) and Engine running time 120s (or Time from IG "OFF" to IG "ON" 360 min and ECT -10 (14)) Engine running 	 Poor connection Open or short to battery in harness Open in ground harness IATS PCM
Threshold value	Intake air temperature sensor's voltage 4.9V	
Diagnosis Time	Continuous (More than 10 seconds failure for every 20 seconds test)	
MIL On Condition	2 Driving Cycles	

SPECIFICATION E7EB938C

Temp. (/)	Resistance (k)	Temp. (/)	Resistance (k)
-40(-40)	95.95 ~ 105.78	20(68)	3.42 ~ 3.61
-20(-4)	27.4 ~ 29.77	40(104)	1.43 ~ 1.5
0(32)	9.08 ~ 9.72	60(140)	0.66 ~ 0.69
10(50)	5.49 ~ 5.83	80(176)	0.33 ~ 0.34

SCHEMATIC DIAGRAM EB296B2E

Refer to DTC P0110.

FL -216 FUEL SYSTEM

SIGNAL WAVEFORM AND DATA ED03819A

Refer to DTC P0110.

MONITOR DTC STATUS E8909E8B

Refer to DTC P0110.

TERMINAL AND CONNECTOR INSPECTION E1E55447

Refer to DTC P0110.

SIGNAL CIRCUIT INSPECTION EE5193A4

- 1. Check voltage
 - 1) IG "OFF" and disconnect IATS connector.
 - 2) IG "ON" and ENG "OFF"
 - Measure voltage between terminal 4 of IATS harness connector and chassis ground.

Specification: Approx. 5V

4) Is the measured voltage within specification?

YES

Go to "Ground Circuit Inspection" procedure.

NO

If the voltage is 0V, go to "Check open in harness" as follows. If the voltage is more than 5.1V, go to "Check short to battery in harness" as follows.

- 2. Check short to battery in harness
 - 1) IG "OFF" and disconnect IATS connector and PCM connector.
 - 2) Measure resistance between terminals 2 and 4 of IATS harness connector.
 - 3) Measure resistance between terminals 1 and 4 of IATS harness connector.

Specification: Infinite

4) Is the measured resistance within specification?

YES

Go to "Component Inspection" procedure.

NO

Repair short to battery in harness and go to "Verification of Vehicle Repair" procedure.

Check open in harness

FL -217

- 1) IG "OFF" and disconnect IATS connector and PCM connctor.
- 2) Measure resistance between terminal 4 of IATS harness connector and 44 of PCM harness connector(C144-A).

Specification: below 1

3) Is the measured resistance within specification?

Go to "Ground Circuit Inspection" procedure.

NO

Repair open in harness and go to "Verification of Vehicle Repair" procedure.

GROUND CIRCUIT INSPECTION EBEACFE

- 1. IG "OFF" and disconnect IATS connector and then turn the ignition ON.
- 2. Measure voltage between terminal 4 of IATS harness connector and chassis ground.
- 3. Measure voltage between terminals 4 and 5 of IATS harness connector.

Specification: Voltage difference between measurement "A" and "B" is below 200mV.

SBLF26464L

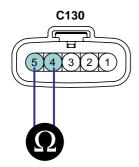
4. Is the measured voltage within specification?

YES

Go to "Component Inspection" procedure.

NO

Repair contact resistance or open in harness and go to "Verification of Vehicle Repair" procedure.


COMPONENT INSPECTION EC128A1

- Check IATS
 - 1) IG "OFF" and disconnect IATS connector.
 - 2) Measure resistance between teminals 4 and 5 of IATS connector.(Component side)

FL -218 FUEL SYSTEM

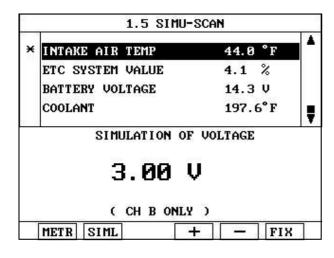
SPECIFICATION:

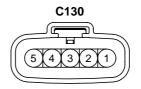
Temp. (/)	Resistance (k)	Temp. (/)	Resistance (k)
-40(-40)	95.95 ~ 105.78	20(68)	3.42 ~ 3.61
-20(-4)	27.4 ~ 29.77	40(104)	1.43 ~ 1.5
0(32)	9.08 ~ 9.72	60(140)	0.66 ~ 0.69
10(50)	5.49 ~ 5.83	80(176)	0.33 ~ 0.34

- 1. MAFS Signal
- 2. MAFS Power
- 3. MAFS Ground
- 4. IATS Signal
- 5. IATS Ground

SBLF26460L

3) Is the measured resistance within specification?


Go to "Check PCM" as follows.


NO

Substitute with a known - good IATS and check for proper operation. If the problem is corrected, replace IATS and go to "Verification of Vehicle Repair" procedure.

2. Check PCM

- 1) IG "OFF" and connect scantool.
- 2) Disconnect IATS connector and connect probe to terminal 4 of IATS harness connector.
- 3) IG "ON" and ENG "OFF" and select the simulation function on scantool.
- 4) Simulate voltage at terminal 4 of IATS harness connector.

- 1. MAFS Signal
- 2. MAFS Power
- 3. MAFS Ground
- 4. IATS Signal

5. IATS Ground

SBLF26461L

FL -219

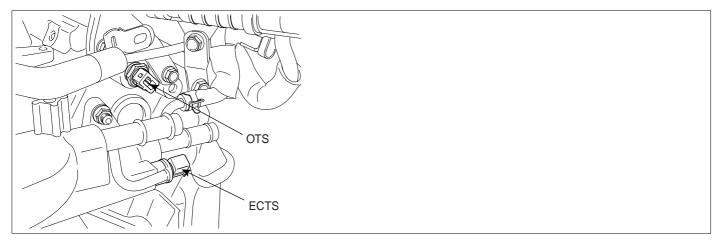
5) Does the signal value of IAT sensor change according to simulation voltage?

Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. Before or after testing PCM on the vehicle, use this function before reusing the PCM.

VERIFICATION OF VEHICLE REPAIR EC9B3ACC


Refer to DTC P0110.

FL -220 FUEL SYSTEM

DTC P0116 ENGINE COOLANT TEMPERATURE CIRCUIT RANGE/PERFORMANCE

COMPONENT LOCATION EAED5465

SGHFL7315N

GENERAL DESCRIPTION

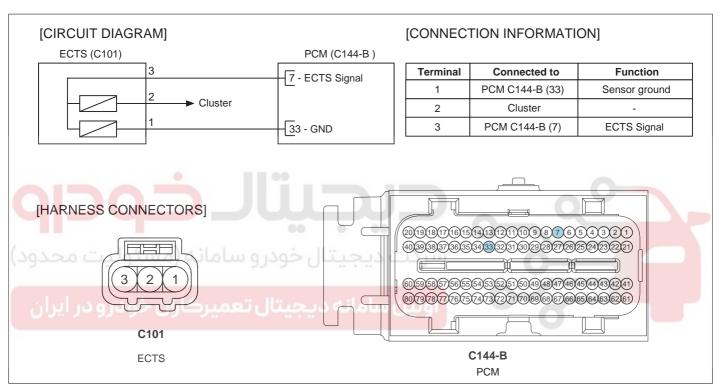
E0D2B0B3

The Engine Coolant Temperature Sensor (ECTS) is located in the engine coolant passage of the cylinder head for detecting the engine coolant temperature. The ECTS uses a thermistor whose resistance changes with the temperature. The electrical resistance of the ECTS decreases as the temperature increases, and increases as the temperature decreases. The reference 5 V in the PCM is supplied to the ECTS via a resistor in the PCM. That is, the resistor in the PCM and the thermistor in the ECTS are connected in series. When the resistance value of the thermistor in the ECTS changes according to the engine coolant temperature, the output voltage also changes. During cold engine operation the PCM increases the fuel injection duration and controls the ignition timing using the information of engine coolant temperature to avoid engine stalling and improve drivability.

DTC DESCRIPTION E5B9853E

If the ECT signal is stuck above the lowest enabling temperature value, P0116 is set. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

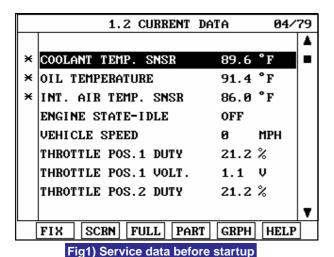
DTC DETECTING CONDITION E51D275A


Item	Detecting Condition	Possible cause
DTC Strategy	Monitor the engine coolant temperature	
Enable Conditions	 Shutdown time > 180 minutes Intake air-temperature at start-up < 40 (104) No disabling faults(ECTS) Engine running > 60 seconds Minimum airflow is satisfied for a certain time. 	• ECTS
Threshold value	When the start-up engine coolant temperature does not rise by 3 (5.4).	
Diagnosis Time	Immediately	
MIL On Condition	2 Driving Cycles	

FL -221

SPECIFICATION E77D941D

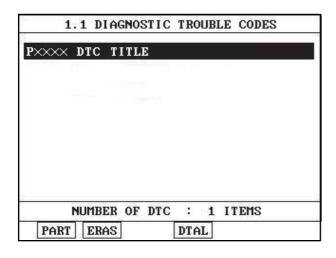
Temp. (/)	Resistance (k)	Temp. (/)	Resistance (k)
-40(-40)	48.14	40(104)	1.15
-20(-4)	14.13 ~ 16.83	60(140)	0.59
0(32)	5.79	80(176)	0.32
20(68)	2.31 ~ 2.59		

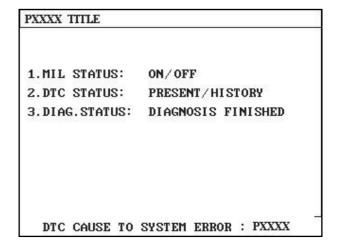

SCHEMATIC DIAGRAM EFB54310

UFBG242A

FL -222 FUEL SYSTEM

SIGNAL WAVEFORM AND DATA E46723DD


	1.2 CURRENT DATA 04/7	79
		•
×	COOLANT TEMP. SNSR 145.4°F	
×	OIL TEMPERATURE 113.0°F	
×	INT. AIR TEMP. SNSR 84.2 °F	
	ENGINE STATE-IDLE ON	
	VEHICLE SPEED Ø MPH	
	THROTTLE POS.1 DUTY 14.9 %	
	THROTTLE POS.1 VOLT. 0.7 V	
	THROTTLE POS.2 DUTY 14.5 %	
		•
	FIX SCRN FULL PART GRPH HELP	
_	is 2) Service data in a few minutes since startu	_


Fig2) Service data in a few minutes since startup

The output signals of IATS & ECTS change smoothly without any rapid changes. Those have almost same characteristic signal during the early period after start. It means that the temperatures of intake air and engine coolant are depended on the temperature of atmosphere. Meanwhile, during the warming up, the output signal of ECTS is going up increasingly. but, the output signal of IATS changes a little bit. even it may not change almost. It means that the heat of engine does not affect on the temperature of intake air.

MONITOR DTC STATUS ED2493E2

- Check DTC Status
- - 1) Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu
 - Read "DTC Status" parameter.

SCMF16159L

SCMF16818N

5) Is "Present" Fault displayed?

FL -223

YES

Go to "Component Inspection" procedure.

Fault is intermittent, go to "Verification of vehicle Repair" procedure.

COMPONENT INSPECTION E137EF85

- 1. IG "OFF" and disconnect ECTS connector.
- 2. Remove it.
- 3. Measure resistance between terminals 1 and 3 of ECTS connector as the temperature rises.

SPECIFICATION:

Temp. (/)	Resistance (k)	Temp. (/)	Resistance (k)
-40(-40)	48.14	40(104)	1.15
-20(-4)	14.13 ~ 16.83	60(140)	0.59
0(32)	5.79	80(176)	0.32
20(68)	2.31 ~ 2.59		0

1) Are the measured resistance within specification?

YES

Clear DTC and Test-drive under enable conditions above-mentioned. After the test, If this DTC is set, recheck it thoroughly. If not, it is intermittent fault, go to "Verification of vehicle Repair" procedure.

NO

Substitute with a known - good ECTS and check for proper operation. If the problem is corrected, Go to "Verification of Vehicle Repair"procedure.

VERIFICATION OF VEHICLE REPAIR E65E8205

After a repair, it is essential to verify that the fault has been corrected.

- Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

YES

System performing to specification at this time. Clear the DTC.

NO

Go to the applicable troubleshooting procedure.

FL -224 FUEL SYSTEM

DTC P0117 ENGINE COOLANT TEMPERATURE CIRCUIT LOW INPUT

COMPONENT LOCATION EF6E87CF

Refer to DTC P0116.

GENERAL DESCRIPTION EE7B3A72

Refer to DTC P0116.

DTC DESCRIPTION E81BF19C

Checking output signals from ECTS every 80 sec. under detecting condition, if an output signal is below 0.1V for more than 40 sec., PCM sets P0117. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION E1517CEA

lte	em	Detecting Condition	Possible cause
DTC S	strategy	Signal low	
Enable	Case 1	Time after start-up 120 sec.	
Condi- tions	Case 2	Time from IG "OFF" to IG "ON" 360 min. Engine running	Poor connectionShort to ground in harness
Thresho	old value	Engine coolant temperature sensor's voltage	• ECTS
Diagnos	sis Time	Continuous (More than 40 seconds failure for every 80 second test)	• PCM
MIL On (Condition	2 Driving Cycle	

SPECIFICATION E80C122A

Temp. (/)	Resistance (k)	Temp. (/)	Resistance (k)
-40(-40)	48.14	40(104)	1.15
-20(-4)	14.13 ~ 16.83	60(140)	0.59
0(32)	5.79	80(176)	0.32
20(68)	2.31 ~ 2.59		

SCHEMATIC DIAGRAM EA3D6F31

Refer to DTC P0116.

SIGNAL WAVEFORM AND DATA EFAD82B4

Refer to DTC P0116.

FL -225

MONITOR DTC STATUS E0052B33

Refer to DTC P0116.

TERMINAL AND CONNECTOR INSPECTION E7E53ECF

Refer to DTC P0116.

SIGNAL CIRCUIT INSPECTION EECE662B

- 1. Check voltage
 - 1) IG "OFF" and disconnect ECTS connector.
 - 2) IG "ON" and ENG "OFF"
 - 3) Measure voltage between terminal 3 of ECTS harness connector and chassis ground.

Specification: Approx. 5V

4) Is the measured voltage within specification?

YES

Go to "Component Inspection" procedure.

کت دیجیتال خودر و سامانه (مسئولیا NO

Go to "Check short to ground in harness" as follows.

- Check short to ground in harness
 - 1) IG "OFF" and disconnect ECTS connector and PCM connector.
 - Measure resistance between terminal 3 of ECTS harness connector and chassis ground.
 - 3) Measure resistance between terminals 1 and 3 of ECTS harness connector.

Specification: Infinite

4) Is the measured resistance within specification?

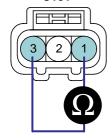
YES

Go to "Component Inspection" procedure.

NO

Repair short to ground in harness, and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION E88C69E


- Check ECTS
 - 1) IG "OFF" and disconnect ECTS connector.
 - 2) Measure resistance between terminals 1 and 3 of ECTS connector.(Component side)

FL -226 FUEL SYSTEM

SPECIFICATION:

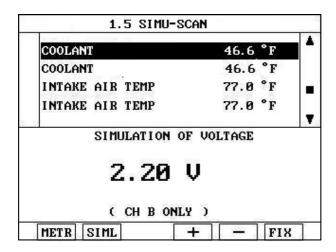
Temp. (/)	Resistance (k)	Temp. (/)	Resistance (k)
-40(-40)	48.14	40(104)	1.15
-20(-4)	14.13 ~ 16.83	60(140)	0.59
0(32)	5.79	80(176)	0.32
20(68)	2.31 ~ 2.59		

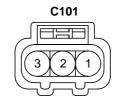
C101

- 1. ECTS Ground
- 2. To Gauge
- 3. ECTS Signal

SBLF26467L

3) Is the measured resistance within specification?


Go to "Check PCM" as follows.



Substitute with a known - good ECTS and check for proper operation. If the problem is corrected, replace ECTS and go to "Verification of Vehicle Repair" procedure.

2. Check PCM

- 1) IG "OFF" and connect scantool.
- 2) Connect probe to terminal 3 of ECTS harness connector.
- 3) IG "ON" and ENG "OFF" and select the simulation function on scantool.
- 4) Simulate voltage at terminal 3 of ECTS harness connector.

- 1. ECTS Ground
- 2. To Gauge
- 3. ECTS Signal

SBLF26468L

FL -227

5) Does the signal value of ECT sensor change according to simulation voltage?

Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. Before or after testing PCM on the vehicle, use this function before reusing the PCM.

VERIFICATION OF VEHICLE REPAIR E9484DD

Refer to DTC P0116.

FL -228 FUEL SYSTEM

DTC P0118 ENGINE COOLANT TEMPERATURE CIRCUIT HIGH INPUT

COMPONENT LOCATION EDBC553A

Refer to DTC P0116.

GENERAL DESCRIPTION E29BCF2E

Refer to DTC P0116.

DTC DESCRIPTION E1B28E0C

Checking output signals from ECTS every 80 sec. under detecting condition, if an output signal is above 4.9V for more than 40 sec., PCM sets P0118. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION E0232BDB

Ite	m	Detecting Condition	Possible cause
DTC S	trategy	Open, Signal high	
Enable	Case 1	Time after start-up 120 sec.	
Condi- tions	Case 2	 Time from IG "OFF" to IG "ON" 360 min. Intake air temperature -10 (14) Engine running 	 Poor connection Open or short to battery in signal harness Open in ground harness
Thresho	ld value	Engine coolant temperature sensor's voltage	• ECTS
Diagnos	is Time	Continuous (More than 40 sec. failure for every 80 sec. test)	• PCM
MIL On C	Condition	2 Driving Cycle	

SPECIFICATION E70B25D7

Temp. (/)	Resistance (k)	Temp. (/)	Resistance (k)
-40(-40)	48.14	40(104)	1.15
-20(-4)	14.13 ~ 16.83	60(140)	0.59
0(32)	5.79	80(176)	0.32
20(68)	2.31 ~ 2.59		

SCHEMATIC DIAGRAM E5593F7D

Refer to DTC P0116.

SIGNAL WAVEFORM AND DATA EFBA1651

Refer to DTC P0116.

FL -229

MONITOR DTC STATUS EB9F4

Refer to DTC P0116.

TERMINAL AND CONNECTOR INSPECTION E9B369B;

Refer to DTC P0116.

SIGNAL CIRCUIT INSPECTION EA2AFFC1

- 1. Check voltage
 - 1) IG "OFF" and disconnect ECTS connector.
 - 2) IG "ON" and ENG "OFF"
 - 3) Measure voltage between terminal 3 of ECTS harness connector and chassis ground.

Specification: Approx. 5V

4) Is the measured voltage within specification?

YES

Go to "Ground Circuit Inspection" procedure.

شرکت دیجیتال خودر و سامانه (مسئولہ 👊

If voltage is 0V, go to "Check open in harness" as follows. If it is more than 5.1V, go to "Check short to battery in harness" as follows

- Check short to battery in harness
 - 1) IG "OFF" and disconnect ECTS connector and PCM connector.
 - Measure resistance between terminals 2 and 3 of ECTS harness connector.

Specification: Infinite

3) Is the measured resistance within specification?

YES

Go to "Component Inspection" procedure.

NO

Repair short to battery in harness, and go to "Verification of Vehicle Repair" procedure.

- Check open in harness
 - 1) IG "OFF" and disconnect ECTS connector and PCM connector.
 - Measure resistance between terminal 3 of ECTS harness connector and terminal 7 of PCM harness connector tor(C144-B).

Specification: Below 1

FL -230 FUEL SYSTEM

3) Is the measured resistance within specification?

Go to "Ground Circuit Inspection" procedure.

Repair open in harness, and go to "Verification of Vehicle Repair" procedure.

GROUND CIRCUIT INSPECTION E320D658

- 1. IG "OFF" and disconnect ECTS connector and then turn the ignition ON.
- 2. Measure voltage between terminal 3 of ECTS harness connector and chassis ground.
- 3. Measure voltage between terminals 1 and 3 of ECTS harness connector.

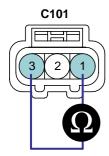
Specification: Voltage difference between measurement "A" and "B" is below 200mV.

4. Is the measured voltage within specification?

YES

Go to "Component Inspection" procedure.

Repair open or contact resistance in harness, and go to "Verification of Vehicle Repair" procedure.


COMPONENT INSPECTION EFDCD0E3

- Check ECTS
 - 1) IG "OFF" and disconnect ECTS connector.
 - 2) Measure resistance between terminals 1 and 3 of ECTS connector.(Component side)

SPECIFICATION:

Temp. (/)	Resistance (k)	Temp. (/)	Resistance (k)
-40(-40)	48.14	40(104)	1.15
-20(-4)	14.13 ~ 16.83	60(140)	0.59
0(32)	5.79	80(176)	0.32
20(68)	2.31 ~ 2.59		

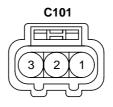
FL -231

- 1. ECTS Ground
- 2. To Gauge
- 3. ECTS Signal

SBLF26467L

3) Is the measured resistance within specification?


Go to "Check PCM" as follows.


NO

Substitute with a known - good ECTS and check for proper operation. If the problem is corrected, replace ECTS and go to "Verification of Vehicle Repair" procedure.

2. Check PCM

- 1) IG "OFF" and connect scantool.
- 2) Connect probe to terminal 3 of ECTS harness connector.
 - 3) IG "ON" and ENG "OFF" and select the simulation function on scantool.
 - 4) Simulate voltage at terminal 3 of ECTS harness connector.

- 1. ECTS Ground
- 2. To Gauge
- 3. ECTS Signal

SBLF26468L

5) Does the signal value of ECT sensor change according to simulation voltage?

Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

NO

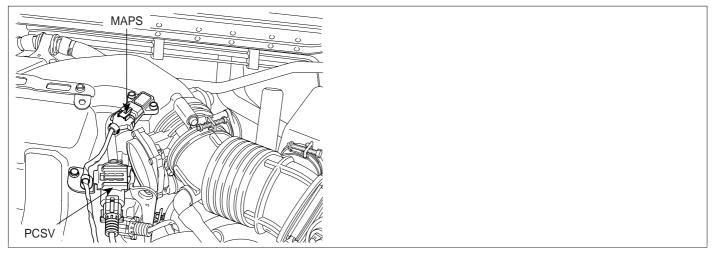
FL -232 FUEL SYSTEM

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. Before or after testing PCM on the vehicle, use this function before reusing the PCM.

VERIFICATION OF VEHICLE REPAIR E5C273BE

Refer to DTC P0116.



FL -233

DTC P0122 THROTTLE/PEDAL POSITION SENSOR/SWITCH "A" CIRCUIT LOW INPUT

COMPONENT LOCATION EA6603AC

SGHFL7314N

GENERAL DESCRIPTION E6BA4D6

The Electronic Throttle Control(ETC) system is made of the components throttle body, Throttle Position Sensor(TPS)1 & 2 and Accelerator Position Sensor(APS) 1 & 2. TPS1 & 2 are sharing the same source voltage and ground. The throttle valve opening is control by throttle motor which is controlled by Engine Control Module(PCM). The opposite position indicator shows inverted signal characteristics. TPS1 output voltage increases smoothly in proportion with the throttle valve opening angle after starting. TPS2 output voltage decreases in inverse proportion with the throttle valve opening angle after starting. TPS provides feedback to the PCM to control the throttle motor in order to control the throttle valve opening angle properly in response to the driving condition.

DTC DESCRIPTION E62744E2

Checking output signals from TPS1 every 8.5 sec. under detecting condition, if an output signal is below 0.25V for more than 0.1 sec., PCM sets P0122. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

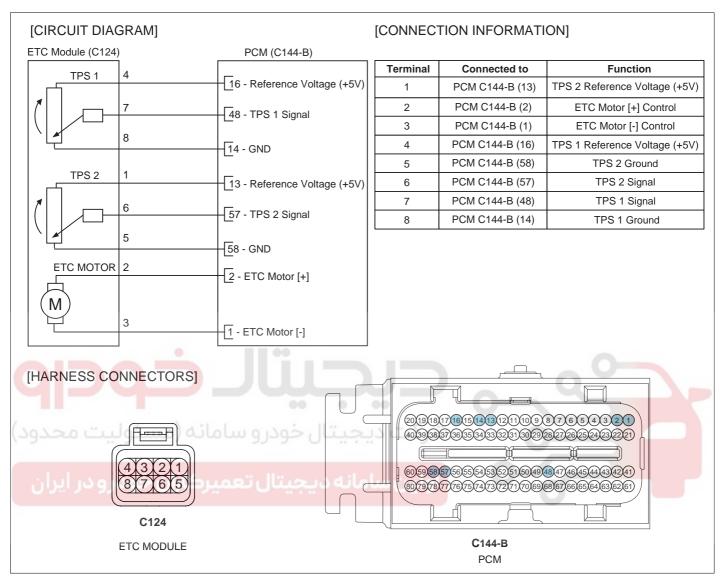
DTC DETECTING CONDITION E59ACBE9

Item	Detecting Condition	Possible Cause
DTC Strategy	• signal low	Poor connection
Enable condition	• IG "ON	Open or short to ground
threshold value	The voltage of TPS	in power harness • Short to ground in signal
diagnosis time	Continuous (more than 0.1 sec. failure for every 8.5 sec.test)	harness • TPS
MIL ON condition	2 driving cycles	• PCM

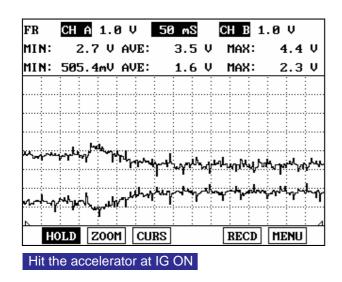
FL -234 FUEL SYSTEM

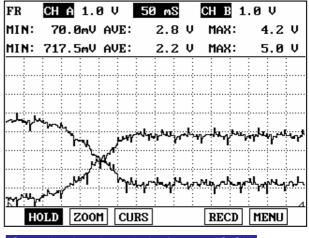
SPECIFICATION E2BF887

Throttle opening (°)	Output voltage(V) [Vref=5.0]	
	TPS1	TPS2
0°	0.0V	5.0V
10°	0.5V	4.5V
20°	0.9V	4.1V
30°	1.4V	3.6V
40°	1.8V	3.2V
50°	2.3V	2.7V
60°	2.7V	2.3V
70°	3.2V	1.8V
80°	3.6V	1.4V
90°	4.1V	0.9V
100°	4.5V	0.5V
110°	5.0V	0.0V



اولین سامانه دیجیتال تعمیرکاران خودرو در ایران


FL -235


SCHEMATIC DIAGRAM E6372C6

UFBG236A

SIGNAL WAVEFORM AND DATA E1C71CC8

Open the throttle valve by force at IG ON

EGRF604Z

FL -236 FUEL SYSTEM

MONITOR DTC STATUS EACCDERS

- 1. Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu.
 - 4) Read "DTC Status" parameter.

Go to "Terminal and connector inspection" procedure.

NO

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

TERMINAL AND CONNECTOR INSPECTION EB01A128

- 1. Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- 2. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

Repair as necessary and go to "Verification of Vehicle Repair" procedure

NO

FL -237

Go to "Power Circuit Inspection" procedure.

POWER CIRCUIT INSPECTION E9B3E80E

- 1. IG "OFF" and disconnect TPS connector.
- 2. IG "ON" and ENG "OFF"
- 3. Measure voltage between terminal 4 of TPS harness connector and chassis ground.

Specification: Approx. 5V

4. Is the measured voltage within specification?

Go to "Signal circuit inspection" procedure.

NO

Repair open or short to ground in power harness, and go to "Verification of Vehicle Repair" procedure.

SIGNAL CIRCUIT INSPECTION E51612D1

- Check short to ground in harness
 - 1) IG "OFF" and disconnect TPS connector and PCM connector.
 - 2) Measure resistance between terminal 7 of TPS harness connector and chassis ground.
 - 3) Measure resistance between terminals 7 and 5(8) of TPS harness connector.

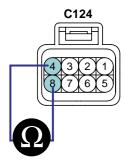
Specification: Infinite

4) Is the measured resistance within specification?

YES

Go to "Component Inspection" procedure.

NO


Repair short to ground in harness, and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION E928549

- Check TPS
 - 1) IG "OFF" and disconnect TPS connector.
 - 2) Measure resistance between terminals 4 and 8 of TPS connector.(component side)

Specification: 4 ~ 6k

FL -238 FUEL SYSTEM

- 1. TPS2 supply
- 2. ETS motor control(+)
- 3. ETS motor control(-)
- 4. TPS1 supply
- 5. TPS2 ground
- 6. TPS2 signal
- 7. TPS1 signal 8. TPS1 ground

o. .. o. g. o....

SBLFL7005N

3) Is the measured resistance within specification?

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

Substitute with a known - good ECT motor & TPS and check for proper operation. If the problem is corrected, replace ECT motor & TPS and go to "Verification of Vehicle Repair" procedure.

CAUTION

Procedure of ETS Initialization

- 1. Erase the trouble codes on PCM
- 2. Turn the ignition key off and keep this condition until the main relay is turned off.(10 sec.)
- 3. Turn ignition key on more than 1second to record the throttle motor position on the EEPROM

VERIFICATION OF VEHICLE REPAIR FCC5F2AF

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC

Go to the applicable troubleshooting procedure.

FL -239

DTC P0123 THROTTLE/PEDAL POSITION SENSOR/SWITCH "A" CIRCUIT HIGH INPUT

COMPONENT LOCATION E36FF71A

Refer to DTC P0122.

GENERAL DESCRIPTION EE3D0817

Refer to DTC P0122.

DTC DESCRIPTION EB650363

Checking output signals from TPS1 every 8.5 sec. under detecting condition, if an output signal is above 4.75V for more than 0.1 sec., PCM sets P0123. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION EDCF9A90

Item	Detecting Condition	Possible Cause
DTC Strategy	• signal high	0
Enable condition	• IG "ON	Poor connectionOpen or short to battery
threshold value	The voltage of TPS 4.75V	in signal harness
diagnosis time	Continuous (more than 0.1 sec. failure for every 8.5 sec.test)	Open in ground harnessTPSPCM
MIL ON condition	2 driving cycles	

SPECIFICATION EC661BE6

Throttle opening ($^{\circ}$)	Output voltage(V) [Vref=5.0]	
	TPS1	TPS2
0°	0.0V	5.0V
10°	0.5V	4.5V
20°	0.9V	4.1V
30°	1.4V	3.6V
40°	1.8V	3.2V
50°	2.3V	2.7V
60°	2.7V	2.3V
70°	3.2V	1.8V
80°	3.6V	1.4V
90°	4.1V	0.9V
100°	4.5V	0.5V
110°	5.0V	0.0V

FL -240 FUEL SYSTEM

SCHEMATIC DIAGRAM E2475AA4

Refer to DTC P0122.

SIGNAL WAVEFORM AND DATA E7D02AD8

Refer to DTC P0122.

MONITOR DTC STATUS E9B2BD74

Refer to DTC P0122.

TERMINAL AND CONNECTOR INSPECTION E9A65BF3

Refer to DTC P0122.

SIGNAL CIRCUIT INSPECTION EC4E056A

- 1. Check voltgae
 - 1) IG "OFF" and disconnect TPS connector.
 - 2) IG "ON" and ENG "OFF"
 - 3) Measure voltage between terminal 7 of TPS harness connector and chassis ground.

Specification: Approx. 5V

4) Is the measured voltage within specification?

YES

Go to "Check short to battery in harness" as follows.

NO

Go to "Check open in harness" as follows.

- 2. Check open in harness
 - 1) IG "OFF" and disconnect TPS connector and PCM connector.
 - Measure resistance between terminal 7 of TPS harness connector and terminal 48 of PCM harness connector tor(C144-B).

Specification: Below 1

3) Is the measured resistance within specification?

YES

Go to "Ground Circuit Inspection" procedure.

NO

Repair open in harness, and go to "Verification of Vehicle Repair" procedure.

FL -241

- 3. Check short to battery in harness
 - 1) IG "OFF" and disconnect TPS connector and PCM connector.
 - 2) Measure resistance between terminals 4 and 7 of TPS harness connector.
 - Measure resistance between terminals 1 and 7 of TPS harness connector.
 - 4) Measure resistance between terminals 2 and 7 of TPS harness connector.
 - 5) Measure resistance between terminals 3 and 7 of TPS harness connector.

Specification: Infinite

6) Is the measured resistance within specification?

Go to "Ground circuit inspection " procedure.

NO

Repair short to battery in harness, and go to "Verification of Vehicle Repair" procedure.

GROUND CIRCUIT INSPECTION E72A498

- IG "OFF" and disconnect TPS connector.
- 2. IG "ON" and ENG "OFF"
- Measure voltage between terminal 4 of TPS harness connector and chassis ground.
- 4. Measure voltage between terminals 4 and 8 of TPS harness connector.

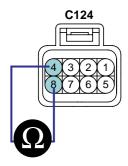
Specification: Voltage difference between measurement "A" and "B" is below 200mV.

5. Is the measured voltage within specification?

YES

Go to "Component inspection" procedure.

NO


Repair open or contact resistance in harness, and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION E3A8A55A

- Check TPS
 - 1) IG "OFF" and disconnect TPS connector.
 - 2) Measure resistance between terminals 4 and 8 of TPS connector.(component side)

Specification: 4 ~ 6k

FL -242 FUEL SYSTEM

- 1. TPS2 supply
- 2. ETS motor control(+)
- 3. ETS motor control(-)
- 4. TPS1 supply
- 5. TPS2 ground
- 6. TPS2 signal
- 7. TPS1 signal
- 8. TPS1 ground

SBLFL7005N

3) Is the measured resistance within specification?

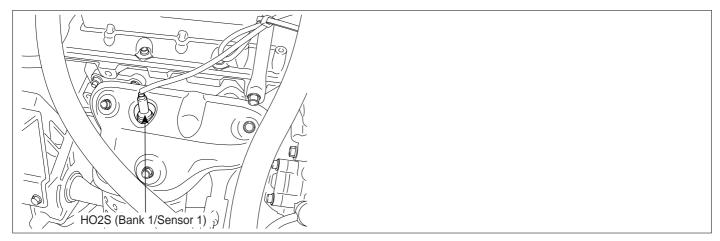
Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

Substitute with a known - good ECT motor & TPS and check for proper operation. If the problem is corrected, replace ECT motor & TPS and go to "Verification of Vehicle Repair" procedure.

Procedure of ETS Initialization

1. Erase the trouble codes on PCM

- 2. Turn the ignition key off and keep this condition until the main relay is turned off.(10 sec.)
- 3. Turn ignition key on more than 1second to record the throttle motor position on the EEPROM


VERIFICATION OF VEHICLE REPAIR F344C834

Refer to DTC P0122.

FL -243

DTC P0131 HO2S CIRCUIT LOW VOLTAGE (BANK 1 / SENSOR 1)

COMPONENT LOCATION E0D98241

SGHFL7310N

GENERAL DESCRIPTION E709CC4

In order to control emissions of the CO, HC and NOx components of the exhaust gas, heated oxygen sensor (HO2S), mounted on the front side and rear side of catalytic converter, detects the oxygen content in the exhaust gas. The front HO2S signal is used to control air/fuel ratio (closed loop fuel control) and the rear HO2S signal is used to monitor front HO2S and catalyst for proper operation. The HO2S requires a minimum temperature to operate properly and provide a closed loop fuel control system. The HO2S contains the heater element to reduce its warming-up time and ensure its performance during all driving conditions. The oxygen sensor generates a voltage that indicates the difference between the oxygen content of the exhaust stream and the oxygen content of ambient air. When the exhaust stream is "rich," there is more oxygen in the ambient air than in the exhaust stream, so the voltage will be higher.

DTC DESCRIPTION E43E543D

Checking output signals from HO2S under detecting condition, if an output signal is below 0.04V for more than predetermined time, PCM sets P0131. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION E46CDE5F

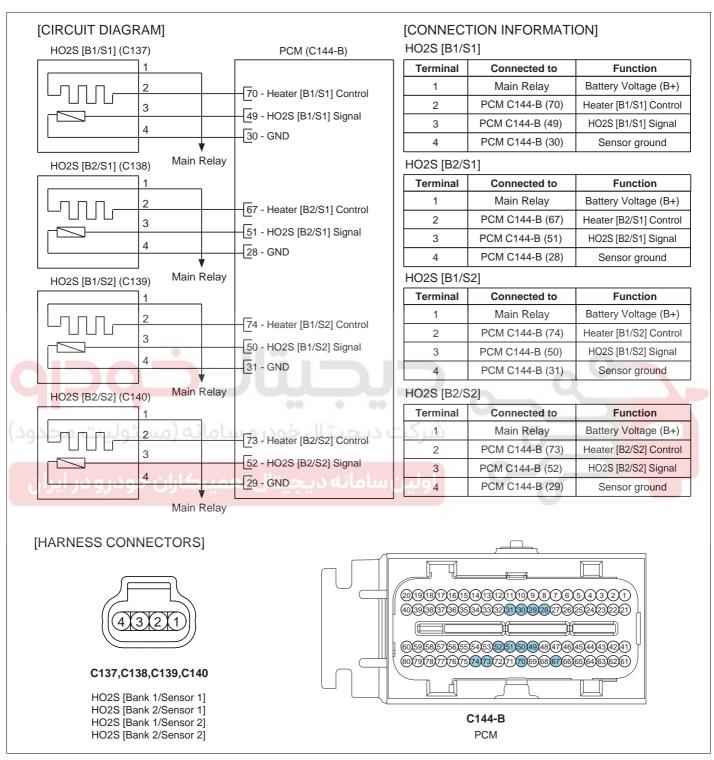
Item	Detecting Condition	Possible cause
DTC Strategy	Monitor signal voltage	
Enable Conditions	Battery voltage 10VEngine running 60 sec.Engine warm-up state	Poor connection Short to ground in harness
Threshold value	• The voltage of HO2S(B1/S1) < 0.04V	• HO2S(B1/S1)
Diagnosis Time • Continuous (more than 12.5 sec. failure for every 15 sec.test)		• PCM
MIL On Condition	2 Driving Cycles	

FL -244 FUEL SYSTEM

SPECIFICATION

E585DBF4

(REFERENCE ONLY)


Test Condition	HO2S Voltage(Sensor1)	HO2S Voltage(Sensor2)
HO2S Signal at idle after warm-up	Signal is normally switching from rich to lean more than 3 times in 10 sec.	Signal is normally above 0.6V.
HO2S signal at open circuit (Pumping current OFF)	Approx. 0.45V	
HO2S signal at open circuit (Pumping current ON)	Approx	. 3.5V

FL -245

SCHEMATIC DIAGRAM

UFBG250B

FL -246 FUEL SYSTEM

SIGNAL WAVEFORM AND DATA E093D442

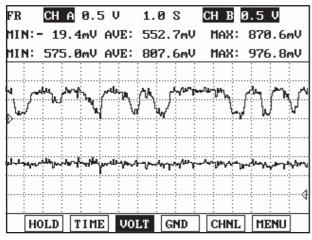
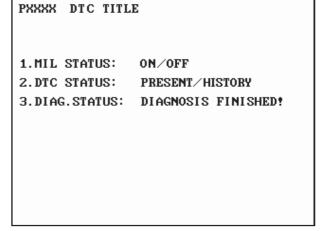


Fig) Signal waveforms of front HO2S(the upper) and rear HO2S(the lower)


SEPFL6415N

After warming-up, if accelerator pedal is released suddenly around 4000rpm, the HO2S signal reading will be lower than 200mV resulting from Fuel cut-off for the moment. Conversely, if suddenly accelerator pedal is depressed, HO2S signal reading will be around 0.6V ~ 1.0V. At idle, Normally HO2S signal will switch from lean to rich with 3 Hz. At higher engine RPM, the switching frequency increases.

MONITOR DTC STATUS E444D2

- 1. Check DTC Status
 - Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu.
 - 4) Read "DTC Status" parameter.

SGHFL7305L

5) Is "Present" Fault displayed?

YES

FL -247

Go to "Terminal and connector inspection" procedure.

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

TERMINAL AND CONNECTOR INSPECTION E882C56D

- 1. Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- 2. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

Repair as necessary and go to "Verification of Vehicle Repair" procedure

NO

Go to "Signal Circuit Inspection" procedure.

SIGNAL CIRCUIT INSPECTION E22A

- IG "OFF" and disconnect HO2S(B1/S1) connector.
- 2. IG "ON" and ENG "OFF"
- 3. Measure voltage between terminal 3 of HO2S(B1/S1) harness connector and chassis ground.

Specification: Approx. 3.5V - when pumping current is ON Approx. 0.45V - when pumping current is OFF

4. Is the measured voltage within specification?

Go to "Component Inspection" procedure.

NO

Repair short to ground in harness, and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION E83EB627

- 1. Check the Signal waveform of HO2S
 - 1) IG "OFF" and connect HO2S connector.
 - 2) Engine start.
 - After warming-up, monitor signal waveform of HO2S with scantool.

WWW.DIGITALKHODRO.COM

FL -248 FUEL SYSTEM

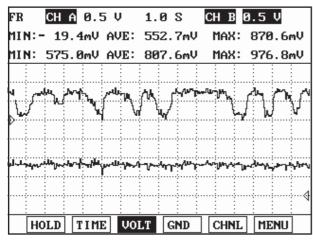


Fig) Signal waveform of front(the upper) and rear(the lower) HO2S at idle

SEPFL6416N

4) Is the sensor switching properly?

YES

Go to "Check HO2S" as indicated below.

NO

Substitute with a known - good HO2S and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

- 2. Check HO2S
 - 1) IG "OFF" and disconnect HO2S connector.
 - Check that the HO2S is securely installed.
 - 3) Check the HO2S for contamination or damage
 - 4) Is the sensor normal?

YES

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

NO

Substitute with a known - good HO2S and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

NOTE

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. Before or after testing PCM on the vehicle, use this function before reusing the PCM

VERIFICATION OF VEHICLE REPAIR E13A5FE2

After a repair, it is essential to verify that the fault has been corrected.

1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode

FL -249

- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC

Go to the applicable troubleshooting procedure.

FL -250 FUEL SYSTEM

DTC P0132 HO2S CIRCUIT HIGH VOLTAGE (BANK 1 / SENSOR 1)

COMPONENT LOCATION EFF5CE75

Refer to DTC P0131.

GENERAL DESCRIPTION E6ABC36F

Refer to DTC P0131.

DTC DESCRIPTION E946983B

Checking output signals from HO2S under detecting condition, if an output signal is above 1.3V for more than predetermined time, PCM sets P0132. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION E2F20A43

Item	Detecting Condition	Possible cause
DTC Strategy	Monitor signal voltage	
Enable Conditions	 Battery voltage 10V Engine running 60 sec. Engine warm-up state 	 Poor connection Short to battery in harness
Threshold value	The voltage of HO2S(B1/S1) & amp;gt; 1.3V	• HO2S(B1/S1)
Diagnosis Time	Continous (more than 12.5 sec.failure for every 15 sec.test)	• PCM
MIL On Condition	2 Driving Cycles	

SPECIFICATION E18A2778

(REFERENCE ONLY)

Test Condition	HO2S Voltage(Sensor1)	HO2S Voltage(Sensor2)
HO2S Signal at idle after warm-up	Signal is normally switching from rich to lean more than 3 times in 10 sec.	Signal is normally above 0.6V.
HO2S signal at open circuit (Pumping current OFF)	Approx. 0.45V	
HO2S signal at open circuit (Pumping current ON)	Approx	. 3.5V

SCHEMATIC DIAGRAM E522459F

Refer to DTC P0131.

SIGNAL WAVEFORM AND DATA E81303D9

Refer to DTC P0131.

FL -251

MONITOR DTC STATUS

Refer to DTC P0131.

TERMINAL AND CONNECTOR INSPECTION EEFCF501

Refer to DTC P0131.

SIGNAL CIRCUIT INSPECTION E3B1676I

- IG "OFF" and disconnect HO2S(B1/S1) connector.
- 2. IG "ON" and ENG "OFF"
- 3. Measure voltage between terminal 3 of HO2S(B1/S1) harness connector and chassis ground.

Specification: Approx. 3.5V - when pumping current is ON Approx. 0.45V - when pumping current is OFF

4. Is the measured voltage within specification?

YES

Go to "Component Inspection" procedure.

NO

Repair short to battery in harness, and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION EFC0C64A

- 1. Check the Signal waveform of HO2S
 - 1) IG "OFF" and connect HO2S connector.
 - 2) Engine start.
 - 3) After warming-up, monitor signal waveform of HO2S with scantool.

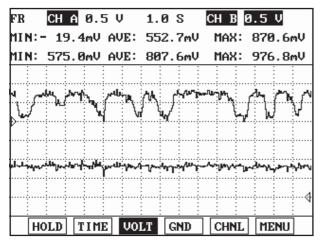


Fig) Signal waveform of front(the upper) and rear(the lower) HO2S at idle

SEPFL6416N

FL -252 FUEL SYSTEM

4) Is the sensor switching properly?

Go to "Check HO2S" as indicated below.

Substitute with a known - good HO2S and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

2. Check HO2S

- 1) IG "OFF" and disconnect HO2S connector.
- 2) Check that the HO2S is securely installed.
- 3) Check the HO2S for contamination or damage
- 4) Is the sensor normal?

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

NO

Substitute with a known - good HO2S and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

اولین سامانه دیجیتال تعمیرکاران خودر و NOTE 🔟

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. Before or after testing PCM on the vehicle, use this function before reusing the PCM

VERIFICATION OF VEHICLE REPAIR EA275B93

Refer to DTC P0131.

FL -253

DTC P0133 HO2S CIRCUIT SLOW RESPONSE (BANK 1 / SENSOR 1)

COMPONENT LOCATION E8D409C5

Refer to DTC P0131.

GENERAL DESCRIPTION ETAA9A4C

Refer to DTC P0131.

DTC DESCRIPTION E57220A3

Checking output signals from HO2S under detecting condition, if PCM judges it's signals too slow, PCM sets P0133. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION E5869A14

Item	Detecting Condition	Possible cause
DTC Strategy	Monitor HO2S's response rate	
Enable Conditions	 Engine at operating temperature Engine run time > 60sec Drive at a steady speed between 45-55 mph(72-88 km/h) Engine Coolant > 70 (158 °F) No disabling faults 	Poor connectionFaulty HO2SFaulty PCM
Threshold value	The calculated response rate is too slow (out of threshold in PCM)	
Diagnosis Time	Continuous	
MIL On Condition	2 Driving Cycles	

SPECIFICATION EEEEA819

(REFERENCE ONLY)

Test Condition	HO2S Voltage(Sensor1)	HO2S Voltage(Sensor2)
HO2S Signal at idle after warm-up	Signal is normally switching from rich to lean more than 3 times in 10 sec.	Signal is normally above 0.6V.
HO2S signal at open circuit (Pumping current OFF)	Approx.	0.45V
HO2S signal at open circuit (Pumping current ON)	Approx	. 3.5V

SCHEMATIC DIAGRAM EFBE8777

Refer to DTC P0131.

SIGNAL WAVEFORM AND DATA E62EBFBC

FL -254 FUEL SYSTEM

MONITOR DTC STATUS E8BBB167

Refer to DTC P0131.

COMPONENT INSPECTION EA6BF947

- 1. Replace the HO2S.
- 2. Clear DTC with scantool.
- 3. Start the engine and warm it up until the radiator fan comes on(more than at least 10 minutes).
- 4. Drive at a steady speed between 45-55 mph(72-88 km/h) for 120 sec.
- 5. Stop and then maintain idle state.
- 6. Check if O2 sensor monitoring readiness is complete.
- 7. Does the scan tool show DTC P0133?

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

NO

Troubleshooting is finished.

VERIFICATION OF VEHICLE REPAIR EC47FEE3

FL -255

DTC P0134 HO2S CIRCUIT NO ACTIVITY DETECTED (BANK 1 / SENSOR 1)

COMPONENT LOCATION EE1A7632

Refer to DTC P0131.

GENERAL DESCRIPTION E8B47A6D

Refer to DTC P0131.

DTC DESCRIPTION E0D31511

Checking output signals from HO2S under detecting condition, if an output voltage is approx.0.45V or 3.5V for more than predetermined time, PCM sets P0134. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION EF31B37F

Ite	em	Detecting Condition	Possible cause
DTC S	trategy	Monitor signal voltage	0
Enable C	onditions	 Battery voltage 10V Engine running 60 sec. Engine warm-up state No disable faults 	
Thresh	Case 1	1.2V Voltage of HO2S 3.9V (at pumping current ON)	Poor connectionOpen in harnessHO2S(B1/S1)
old value	Case 2	0.415V Voltage of HO2S 0.515V (at pumping current OFF)	
Diagnosis Time		Continuous (more than 76.5 sec.failure for every 90 sec.test)	
MIL On Condition • 2 Driv		2 Driving Cycles	

SPECIFICATION E6CC6202

(REFERENCE ONLY)

Test Condition	HO2S Voltage(Sensor1)	HO2S Voltage(Sensor2)
HO2S Signal at idle after warm-up	Signal is normally switching from rich to lean more than 3 times in 10 sec.	Signal is normally above 0.6V.
HO2S signal at open circuit (Pumping current OFF)	Approx.	0.45V
HO2S signal at open circuit (Pumping current ON)	Approx	. 3.5V

SCHEMATIC DIAGRAM E4A3849D

FL -256 FUEL SYSTEM

SIGNAL WAVEFORM AND DATA EF5F48B6

Refer to DTC P0131.

MONITOR DTC STATUS E24595CE

Refer to DTC P0131.

TERMINAL AND CONNECTOR INSPECTION E3B6D570

Refer to DTC P0131.

SIGNAL CIRCUIT INSPECTION EF158CD9

- 1. IG "OFF" and disconnect HO2S(B1/S1) connector.
- 2. IG "ON" and ENG "OFF"
- Measure voltage between terminal 3 of HO2S(B1/S1) harness connector and chassis ground.

Specification: Approx. 3.5V - when pumping current is ON Approx. 0.45V - when pumping current is OFF

4. Is the measured voltage within specification?

YES

Go to "Ground circuit inspection" procedure.

NO

Repair open in harness, and go to "Verification of Vehicle Repair" prcedure.

GROUND CIRCUIT INSPECTION E52173D8

- 1. IG "ON" and disconnect HO2S(B1/S1) connector.
- 2. Measure voltage between terminal 3 of HO2S(B1/S1) harness connector and chassis ground.
- 3. Measure voltage between terminals 3 and 4 of HO2S(B1/S1) harness connector.

Specification: Voltage difference between measurement "A" and "B" is below 200mV.

4. Is the measured voltage within specification?

YES

Go to "Component inspection" procedure.

NO

Repair open or contact resistance in harness, and go to "Verification of Vehicle Repair" prcedure.

FL -257

SEPFL6416N

COMPONENT INSPECTION

- 1. Check the Signal waveform of HO2S
 - 1) IG "OFF" and connect HO2S connector.
 - 2) Engine start.
 - 3) After warming-up, monitor signal waveform of HO2S with scantool.

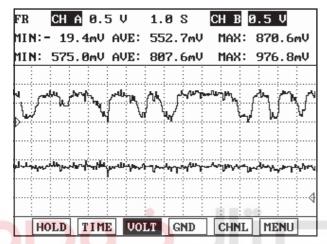


Fig) Signal waveform of front(the upper) and rear(the lower) HO2S at idle

4) Is the sensor switching properly?

لین سامانه دیجیتال تعمیرکاران خودر (YES

Go to "Check HO2S" as indicated below.

NO

Substitute with a known - good HO2S and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

2. Check HO2S

- 1) IG "OFF" and disconnect HO2S connector.
- Check that the HO2S is securely installed.
- 3) Check the HO2S for contamination or damage
- 4) Is the sensor normal?

YES

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

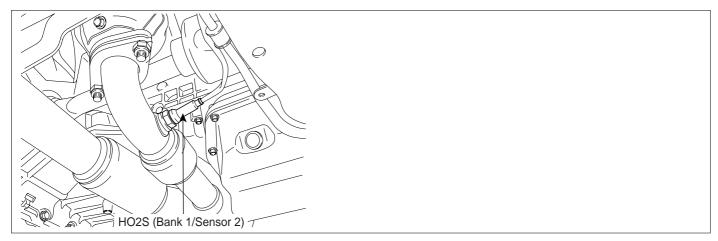
NO

Substitute with a known - good HO2S and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

FL -258 FUEL SYSTEM

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. Before or after testing PCM on the vehicle, use this function before reusing the PCM

VERIFICATION OF VEHICLE REPAIR EED5C452



FL -259

DTC P0137 HO2S CIRCUIT LOW VOLTAGE (BANK 1 / SENSOR 2)

COMPONENT LOCATION EE7CFB10

SGHFL7311N

GENERAL DESCRIPTION E48C25C7

The rear heated oxygen sensor is mounted on the rear side of the Catalytic Converter (warm-up catalytic converter) or in the rear exhaust pipe, which is able to detect catalyst efficiency. The rear heated oxygen sensor (HO2S) produces a voltage between 0V and 1V. This rear heated oxygen sensor is used to estimate the oxygen storage capability. If a catalyst has good conversion properties, the oxygen fluctuations are smoothed by the oxygen storage capacity of the catalyst. If the conversion provided by the catalyst is low due to aging, poisoning or misfiring, then the oxygen fluctuations are similar to signals from the front oxygen sensor.

DTC DESCRIPTION EF4F73C5

Checking output signals from HO2S under detecting condition, if an output signal is below 0.04V for more than predetermined time, PCM sets P0137. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION E3A6DF18

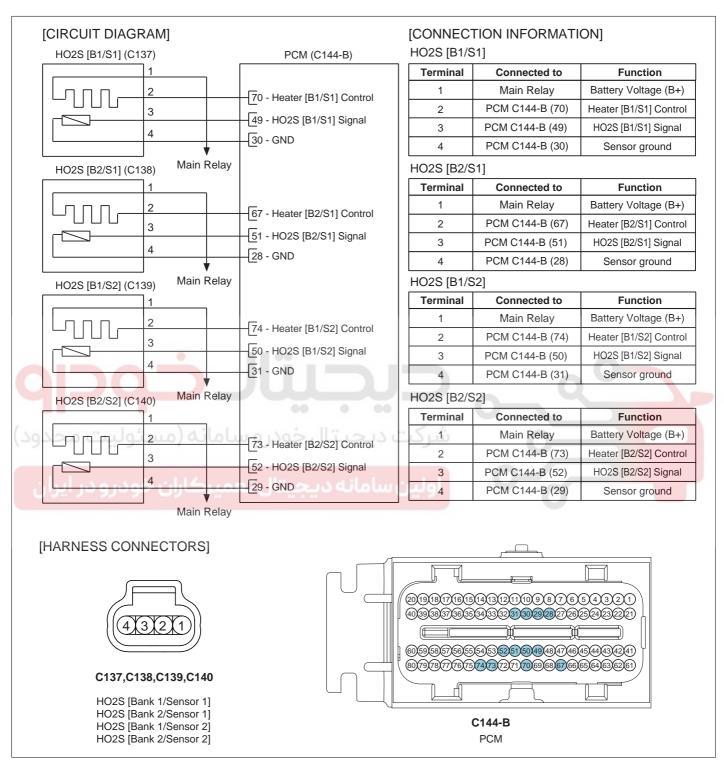
Item	Detecting Condition	Possible cause
DTC Strategy	Monitor signal voltage	
Enable Conditions	Battery voltage 10VEngine running 60 sec.Engine warm-up state	Poor connection Short to ground in harness
Threshold value	The voltage of HO2S(B1/S2) < 0.04V	• HO2S(B1/S2) • PCM
Diagnosis Time	Continuous (more than 12.5 sec. failure for every 15 sec.test)	• PCIVI
MIL On Condition	2 Driving Cycles	

FL -260 FUEL SYSTEM

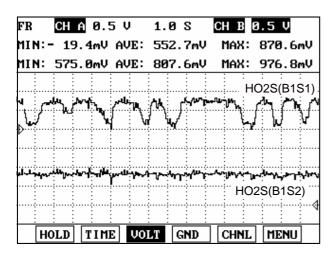
SPECIFICATION

E3C07FB6

(REFERENCE ONLY)


Test Condition	HO2S Voltage(Sensor1)	HO2S Voltage(Sensor2)
HO2S Signal at idle after warm-up	Signal is normally switching from rich to lean more than 3 times in 10 sec.	Signal is normally above 0.6V.
HO2S signal at open circuit (Pumping current OFF)	Approx.	0.45V
HO2S signal at open circuit (Pumping current ON)	Approx	. 3.5V

FL -261

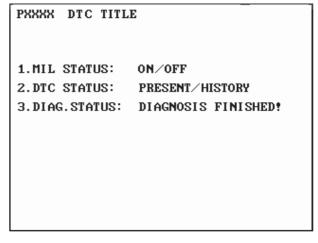

SCHEMATIC DIAGRAM E8476

UFBG250B

FL -262 FUEL SYSTEM

SIGNAL WAVEFORM AND DATA E4CC089D




EGRF605X

The amplitude of the signal output of the rear HO2S is small compared to the front HO2S because the rear HO2S detects emission gas purified by the catalytic converter. This is the normal signal waveform of the rear HO2S at idle.

MONITOR DTC STATUS E62F6171

- 1. Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).
 - شرکت دیچیتال خودرو سامانه (مسئولی: IG "ON". ا
 - Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu.
 - 4) Read "DTC Status" parameter.

SGHFL7305L

5) Is "Present" Fault displayed?

Go to "Terminal and connector inspection" procedure.

NO

FL -263

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

TERMINAL AND CONNECTOR INSPECTION E1709BB:

- 1. Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- 2. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

Repair as necessary and go to "Verification of Vehicle Repair" procedure

NO

Go to " Signal Circuit Inspection " procedure

SIGNAL CIRCUIT INSPECTION

1. IG "OFF" and disconnect HO2S(B1/S2)

2. IG "ON"

3. Measure voltage between terminal 3 of HO2S(B1/S2) harness connector and chassis ground.

Specification: Approx. 3.5V - when pumping current is ON Approx. 0.45V - when pumping current is OFF

4. Is the measured voltage within specification?

Go to "Component Inspection" procedure.

Repair short to ground in harness, and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION EA52211

- 1. Check the Signal waveform of HO2S
 - 1) IG "OFF" and connect HO2S connector.
 - 2) Engine start.
 - 3) After warming-up, monitor signal waveform of HO2S with scantool.

FL -264 FUEL SYSTEM

Fig) Signal waveform of front(the upper) and rear(the lower) HO2S at idle

SEPFL6416N

4) Is the sensor switching properly?

YES

Go to "Check HO2S" as indicated below.

NO

Substitute with a known - good HO2S and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

- 2. Check HO2S
 - 1) IG "OFF" and disconnect HO2S connector.
 - Check that the HO2S is securely installed.
 - 3) Check the HO2S for contamination or damage
 - 4) Is the sensor normal?

YES

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

NO

Substitute with a known - good HO2S and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

NOTE

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. Before or after testing PCM on the vehicle, use this function before reusing the PCM

VERIFICATION OF VEHICLE REPAIR EEBFF9C6

After a repair, it is essential to verify that the fault has been corrected.

Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode

FL -265

- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC

Go to the applicable troubleshooting procedure.

FL -266 FUEL SYSTEM

DTC P0138 HO2S CIRCUIT HIGH VOLTAGE (BANK 1 / SENSOR 2)

COMPONENT LOCATION E5BB80C7

Refer to DTC P0137.

GENERAL DESCRIPTION E2AF6CCF

Refer to DTC P0137.

DTC DESCRIPTION E255A684

Checking output signals from HO2S under detecting condition, if an output signal is above 1.3V for more than predetermined time, PCM sets P0138. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION E83D93FA

Item	Detecting Condition	Possible cause
DTC Strategy	Monitor signal voltage	
Enable Conditions	 Battery voltage 10V Engine running 60 sec. Engine warm-up state 	Poor connectionShort to battery in harness
Threshold value	 The voltage of HO2S(B1/S2) > 1.3V 	• HO2S(B1/S2)
Diagnosis Time	Continuous (more than 12.5 sec.failure for every 15 sec.test)	• PCM
MIL On Condition	2 Driving Cycles	

SPECIFICATION E730DD63

(REFERENCE ONLY)

Test Condition	HO2S Voltage(Sensor1)	HO2S Voltage(Sensor2)
HO2S Signal at idle after warm-up	Signal is normally switching from rich to lean more than 3 times in 10 sec.	Signal is normally above 0.6V.
HO2S signal at open circuit (Pumping current OFF)	Approx.	0.45V
HO2S signal at open circuit (Pumping current ON)	Approx	. 3.5V

SCHEMATIC DIAGRAM E8F78B65

Refer to DTC P0137.

SIGNAL WAVEFORM AND DATA EB55B9A0

FL -267

MONITOR DTC STATUS E28

Refer to DTC P0137.

TERMINAL AND CONNECTOR INSPECTION E20344D6

Refer to DTC P0137.

SIGNAL CIRCUIT INSPECTION EC5C83AF

- 1. IG "OFF" and disconnect HO2S(B1/S2) connector.
- 2. IG "ON" and ENG "OFF"
- 3. Measure voltage between terminal 3 of HO2S(B1/S2) harness connector and chassis ground.

Specification: Approx. 3.5V - when pumping current is ON Approx. 0.45V - when pumping current is OFF

4. Is the measured voltage within specification?

YES

Go to "Component Inspection" procedure.

NO

Repair short to battery in harness, and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION E068CD98

- 1. Check the Signal waveform of HO2S
 - 1) IG "OFF" and connect HO2S connector.
 - 2) Engine start.
 - 3) After warming-up, monitor signal waveform of HO2S with scantool.

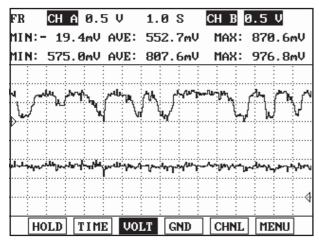


Fig) Signal waveform of front(the upper) and rear(the lower) HO2S at idle

SEPFL6416N

FL -268 FUEL SYSTEM

4) Is the sensor switching properly?

Go to "Check HO2S" as indicated below.

Substitute with a known - good HO2S and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

2. Check HO2S

- 1) IG "OFF" and disconnect HO2S connector.
- 2) Check that the HO2S is securely installed.
- 3) Check the HO2S for contamination or damage
- 4) Is the sensor normal?

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

NO

Substitute with a known - good HO2S and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

اولین سامانه دیجیتال تعمیرکاران خودر و NOTE 🔃

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. Before or after testing PCM on the vehicle, use this function before reusing the PCM

VERIFICATION OF VEHICLE REPAIR EF62234E

FL -269

DTC P0140 HO2S CIRCUIT NO ACTIVITY DETECTED (BANK 1 / SENSOR 2)

COMPONENT LOCATION EC4CA85A

Refer to DTC P0137.

GENERAL DESCRIPTION EDC70FB2

Refer to DTC P0137.

DTC DESCRIPTION EDEOA7DB

Checking output signals from HO2S under detecting condition, if an output voltage is approx.0.45V or 3.5V for more than predetermined time, PCM sets P0140. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION EF1C064D

Ite	em	Detecting Condition	Possible cause
DTC S	Strategy	Monitor signal voltage	0
Enable C	Conditions	 Battery voltage 10V Engine running 60 sec. Engine warm-up state No disable faults 	a Providence tion
Thresh-	Case 1	1.2V Voltage of HO2S 3.9V (at pumping current ON)	Poor ConnectionOpen in harnessHO2S(B1/S2)
value	Case 2 • 0.415V Voltage of HO2S 0.515V (at pumping current OFF)		• PCM
Diagnosis Time		Continuous (more than 76.5 sec.failure for every 90 sec.test)	
MIL On Condition • 2 driving cycles		2 driving cycles	

SPECIFICATION EC43BC5C

(REFERENCE ONLY)

Test Condition	HO2S Voltage(Sensor1)	HO2S Voltage(Sensor2)
HO2S Signal at idle after warm-up	Signal is normally switching from rich to lean more than 3 times in 10 sec.	Signal is normally above 0.6V.
HO2S signal at open circuit (Pumping current OFF)	Approx.	0.45V
HO2S signal at open circuit (Pumping current ON)	Approx	. 3.5V

SCHEMATIC DIAGRAM E84C7AF6

FL -270 FUEL SYSTEM

SIGNAL WAVEFORM AND DATA E0F8A303

Refer to DTC P0137.

MONITOR DTC STATUS EDE 13865

Refer to DTC P0137.

TERMINAL AND CONNECTOR INSPECTION EFC693E

Refer to DTC P0137.

SIGNAL CIRCUIT INSPECTION EFB5A847

- 1. IG "OFF" and disconnect HO2S(B1/S2) connector.
- 2. IG "ON" and ENG "OFF"
- Measure voltage between terminal 3 of HO2S(B1/S2) harness connector and chassis ground.

Specification: Approx. 3.5V - when pumping current is ON Approx. 0.45V - when pumping current is OFF

4. Is the measured voltage within specification?

YES

Go to "Ground Circuit Inspection" procedure.

NO

Repair open in harness, and go to "Verification of Vehicle Repair" procedure.

GROUND CIRCUIT INSPECTION E40A9F9C

- 1. IG "ON" and disconnect HO2S(B1/S2) connector.
- 2. Measure voltage between terminal 3 of HO2S(B1/S2) harness connector and chassis ground.
- 3. Measure voltage between terminals 3 and 4 of HO2S(B1/S2) harness connector.

Specification: Voltage difference between measurement "A" and "B" is below 200mV.

4. Is the measured voltage within specification?

YES

Go to "Component inspection" procedure.

NO

Repair open or contact resistance in harness, and go to "Verification of Vehicle Repair" prcedure.

FL -271

SEPFL6416N

COMPONENT INSPECTION

- 1. Check the Signal waveform of HO2S
 - 1) IG "OFF" and connect HO2S connector.
 - 2) Engine start.
 - 3) After warming-up, monitor signal waveform of HO2S with scantool.

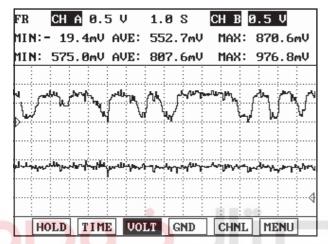


Fig) Signal waveform of front(the upper) and rear(the lower) HO2S at idle

4) Is the sensor switching properly?

ولین سامانه دیجیتال تعمیرکاران خودر (YES

Go to "Check HO2S" as indicated below.

NO

Substitute with a known - good HO2S and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

2. Check HO2S

- 1) IG "OFF" and disconnect HO2S connector.
- Check that the HO2S is securely installed.
- 3) Check the HO2S for contamination or damage
- 4) Is the sensor normal?

YES

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

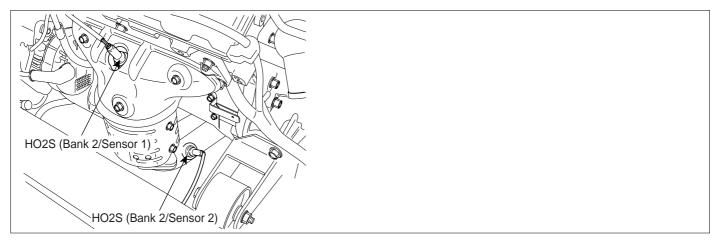
NO

Substitute with a known - good HO2S and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

FL -272 FUEL SYSTEM

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. Before or after testing PCM on the vehicle, use this function before reusing the PCM

VERIFICATION OF VEHICLE REPAIR E25A3A1F



FL -273

DTC P0151 HO2S CIRCUIT LOW VOLTAGE (BANK 2 / SENSOR 1)

COMPONENT LOCATION EC6AF7A9

SGHFL7312N

GENERAL DESCRIPTION EE14E877

In order to control emissions of the CO, HC and NOx components of the exhaust gas, heated oxygen sensor (HO2S), mounted on the front side and rear side of catalytic converter, detects the oxygen content in the exhaust gas. The front HO2S signal is used to control air/fuel ratio (closed loop fuel control) and the rear HO2S signal is used to monitor front HO2S and catalyst for proper operation.

The HO2S requires a minimum temperature to operate properly and provide a closed loop fuel control system. The HO2S contains the heater element to reduce its warming-up time and ensure its performance during all driving conditions. The oxygen sensor generates a voltage that indicates the difference between the oxygen content of the exhaust stream and the oxygen content of ambient air. When the exhaust stream is "rich," there is more oxygen in the ambient air than in the exhaust stream, so the voltage will be higher.

DTC DESCRIPTION E8CAB23D

Checking output signals from HO2S under detecting condition, if an output signal is below 0.04V for more than predetermined time, PCM sets P0151. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

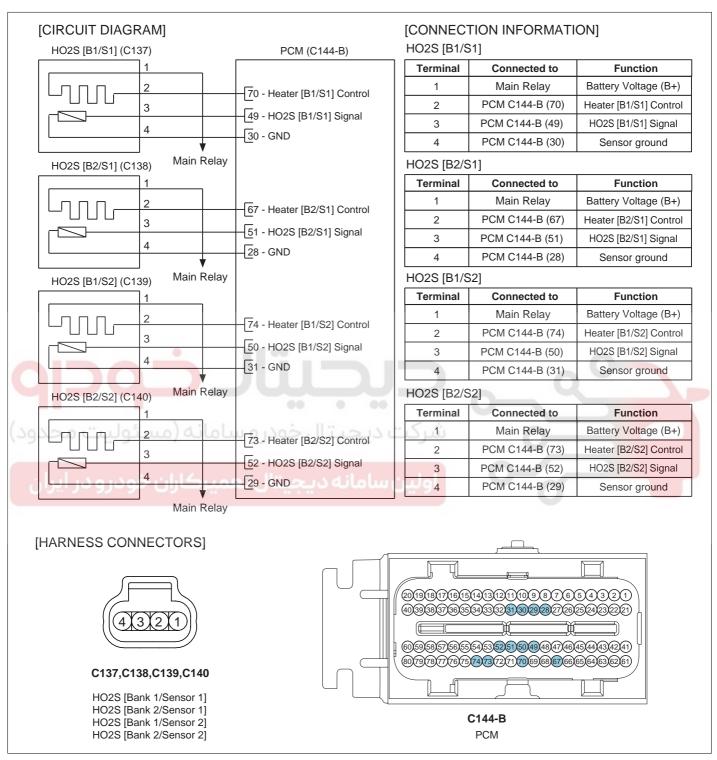
DTC DETECTING CONDITION ECE16229

Item	Detecting Condition	Possible cause
DTC Strategy	Monitor signal voltage	
Enable Conditions	Battery voltage 10VEngine running 60 sec.Engine warm-up state	Poor connection Short to ground in harness
Threshold value	The voltage of HO2S(B2/S1) < 0.04V	• HO2S(B2/S1)
Diagnosis Time	Continuous (more than 12.5 sec. failure for every 15 sec.test)	• PCM
MIL On Condition	2 Driving Cycles	

FL -274 FUEL SYSTEM

SPECIFICATION

(REFERENCE ONLY)


Test Condition	HO2S Voltage(Sensor1)	HO2S Voltage(Sensor2)
HO2S Signal at idle after warm-up	Signal is normally switching from rich to lean more than 3 times in 10 sec.	Signal is normally above 0.6V.
HO2S signal at open circuit (Pumping current OFF)	Approx.	0.45V
HO2S signal at open circuit (Pumping current ON)	Approx	. 3.5V

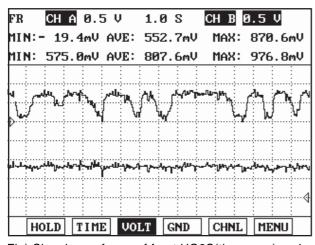
FL -275

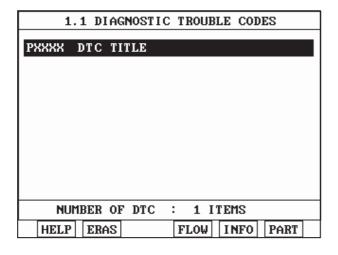
SCHEMATIC DIAGRAM E938

UFBG250B

FL -276 FUEL SYSTEM

SIGNAL WAVEFORM AND DATA E878EE3




Fig) Signal waveforms of front HO2S(the upper) and rear HO2S(the lower)


SEPFL6415N

After warming-up, if accelerator pedal is released suddenly around 4000rpm, the HO2S signal reading will be lower than 200mV resulting from Fuel cut-off for the moment. Conversely, if suddenly accelerator pedal is depressed, HO2S signal reading will be around 0.6V ~1.0V. At idle, Normally HO2S signal will switch from lean to rich with 3 Hz. At higher engine RPM, the switching frequency increases.

MONITOR DTC STATUS EDD4C

- 1. Check DTC Status
 - Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu.
 - 4) Read "DTC Status" parameter.

SGHFL7305L

5) Is "Present" Fault displayed?

YES

FL -277

Go to "Inspection & Repair" procedure.

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

TERMINAL AND CONNECTOR INSPECTION E71140CD

- 1. Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- 2. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

Repair as necessary and go to "Verification of Vehicle Repair" procedure

NO

Go to "Signal Circuit Inspection" procedure.

SIGNAL CIRCUIT INSPECTION E42A9378

IG "OFF" and disconnect HO2S(B2/S1) connector.

- 2. IG "ON" and ENG "OFF"
- 3. Measure voltage between terminal 3 of HO2S(B2/S1) harness connector and chassis ground.

Specification:

Approx. 3.5V - when pumping current is ON Approx. 0.45V - when pumping current is OFF

4. Is the measured voltage within specification?

YES

Go to "Component Inspection" procedure.

NO

Repair short to ground in harness, and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION EB65AD3B

- 1. Check the Signal waveform of HO2S
 - 1) IG "OFF" and connect HO2S connector.
 - 2) Engine start.

FL -278 FUEL SYSTEM

3) After warming-up, monitor signal waveform of HO2S with scantool.

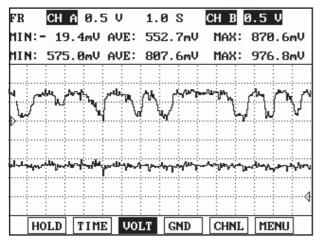


Fig) Signal waveform of front(the upper) and rear(the lower) HO2S at idle

SEPFL6416N

4) Is the sensor switching properly?

YES

Go to "Check HO2S" as indicated below

NO

Substitute with a known - good HO2S and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

- 2. Check HO2S
 - 1) IG "OFF" and disconnect HO2S connector.
 - 2) Check that the HO2S is securely installed.
 - 3) Check the HO2S for contamination or damage
 - 4) Is the sensor normal?

YES

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

NO

Substitute with a known - good HO2S and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

MOTE

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. Before or after testing PCM on the vehicle, use this function before reusing the PCM

VERIFICATION OF VEHICLE REPAIR E1438BA8

After a repair, it is essential to verify that the fault has been corrected.

FL -279

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC

Go to the applicable troubleshooting procedure.

FL -280 FUEL SYSTEM

DTC P0152 HO2S CIRCUIT HIGH VOLTAGE (BANK 2 / SENSOR 1)

COMPONENT LOCATION E26706C0

Refer to DTC P0151.

GENERAL DESCRIPTION E716436F

Refer to DTC P0151.

DTC DESCRIPTION E4E37249

Checking output signals from HO2S under detecting condition, if an output signal is above 1.3V for more than predetermined time, PCM sets P0152. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION E71C3A97

Item	Detecting Condition	Possible cause
DTC Strategy	Monitor signal voltage	
Enable Conditions	 Battery voltage 10V Engine running 60 sec. Engine warm-up state 	Poor connectionShort to battery in harness
Threshold value	 The voltage of HO2S(B2/S1) > 1.3V 	• HO2S(B2/S1)
Diagnosis Time	Continuous more than 12.5 sec.failure for every 15 sec.test)	• PCM
MIL On Condition	2 Driving Cycles	

SPECIFICATION ED7614AD

(REFERENCE ONLY)

Test Condition	HO2S Voltage(Sensor1)	HO2S Voltage(Sensor2)
HO2S Signal at idle after warm-up	Signal is normally switching from rich to lean more than 3 times in 10 sec.	Signal is normally above 0.6V.
HO2S signal at open circuit (Pumping current OFF)	Approx.	0.45V
HO2S signal at open circuit (Pumping current ON)	Approx	. 3.5V

SCHEMATIC DIAGRAM ED85DD18

Refer to DTC P0151.

SIGNAL WAVEFORM AND DATA EE4A9FF1

FL -281

MONITOR DTC STATUS E43741B0

Refer to DTC P0151.

TERMINAL AND CONNECTOR INSPECTION EABAF410

Refer to DTC P0151.

SIGNAL CIRCUIT INSPECTION E9D881E9

- IG "OFF" and disconnect HO2S(B2/S1) connector.
- 2. IG "ON" and ENG "OFF"
- 3. Measure voltage between terminal 3 of HO2S(B2/S1) harness connector and chassis ground.

Specification:

Approx. 3.5V - when pumping current is ON Approx. 0.45V - when pumping current is OFF

4. Is the measured voltage within specification?

YES

Go to "Component Inspection" procedure.

شرکت دیجیتال خودر و سامانه (مسئولیت 🔼 🖎

Repair short to battery in harness, and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION E0E27C87

- Check the Signal waveform of HO2S
 - 1) IG "OFF" and connect HO2S connector.
 - 2) Engine start.
 - 3) After warming-up, monitor signal waveform of HO2S with scantool.

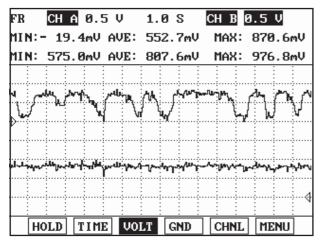


Fig) Signal waveform of front(the upper) and rear(the lower) HO2S at idle

SEPFL6416N

FL -282 FUEL SYSTEM

4) Is the sensor switching properly?

Go to "Check HO2S" as indicated below.

Substitute with a known - good HO2S and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

2. Check HO2S

- 1) IG "OFF" and disconnect HO2S connector.
- 2) Check that the HO2S is securely installed.
- 3) Check the HO2S for contamination or damage
- 4) Is the sensor normal?

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

NO

Substitute with a known - good HO2S and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

اولین سامانه دیجیتال تعمیرکاران خودر و NOTE 🔃

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. Before or after testing PCM on the vehicle, use this function before reusing the PCM

VERIFICATION OF VEHICLE REPAIR EEB387AE

FL -283

DTC P0153 HO2S CIRCUIT SLOW RESPONSE (BANK 2 / SENSOR 1)

COMPONENT LOCATION E2D15594

Refer to DTC P0151.

GENERAL DESCRIPTION EAOFBB9E

Refer to DTC P0151.

DTC DESCRIPTION EA3D5B80

Checking output signals from HO2S under detecting condition, if PCM judges it's signals too slow, PCM sets P0153. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION E44ED939

Item	Detecting Condition	Possible cause
DTC Strategy	Monitor HO2S's response rate	
Enable Conditions	 Engine at operating temperature Engine run time > 60sec Drive at a steady speed between 45-55 mph(72-88 km/h) Engine Coolant > 70 (158 °F) No disabling faults 	Poor connectionFaulty HO2SFaulty PCM
Threshold value	The calculated response rate is too slow (out of threshold in PCM)	
Diagnosis Time	Continuous	
MIL On Condition	2 Driving Cycles	

SPECIFICATION E1105098

(REFERENCE ONLY)

Test Condition	HO2S Voltage(Sensor1)	HO2S Voltage(Sensor2)
HO2S Signal at idle after warm-up	Signal is normally switching from rich to lean more than 3 times in 10 sec.	Signal is normally above 0.6V.
HO2S signal at open circuit (Pumping current OFF)	Approx.	0.45V
HO2S signal at open circuit (Pumping current ON)	Approx	. 3.5V

SCHEMATIC DIAGRAM E8A65428

Refer to DTC P0151.

SIGNAL WAVEFORM AND DATA ED064682

FL -284 FUEL SYSTEM

MONITOR DTC STATUS E45A0499

Refer to DTC P0151.

COMPONENT INSPECTION EB17CCAC

- 1. Replace the HO2S.
- 2. Clear DTC with scantool.
- 3. Start the engine and warm it up until the radiator fan comes on(more than at least 10 minutes).
- 4. Drive at a steady speed between 45-55 mph(72-88 km/h) for 120 sec.
- 5. Stop and then maintain idle state.
- 6. Check if O2 sensor monitoring readiness is complete.
- 7. Does the scan tool show DTC P0153?

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

NO

Troubleshooting is finished.

VERIFICATION OF VEHICLE REPAIR ED5A78FE

FL -285

DTC P0154 HO2S CIRCUIT NO ACTIVITY DETECTED (BANK 2 / SENSOR 1)

COMPONENT LOCATION E7423299

Refer to DTC P0151.

GENERAL DESCRIPTION E7FDA2FA

Refer to DTC P0151.

DTC DESCRIPTION E03768B5

Checking output signals from HO2S under detecting condition, if an output voltage is approx.0.45V or 3.5V for more than predetermined time, PCM sets P0154. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION E02D8310

Ite	em	Detecting Condition	Possible cause
DTC Strategy • Monitor signal volta		Monitor signal voltage	0
Enable Conditions		 Battery voltage 10V Engine running 60 sec. Engine warm-up state No disable faults 	
Thresh-	Case 1	1.2V Voltage of HO2S 3.9V(at pumping current ON)	Poor connectionOpen in harnessHO2S(B2/S1)
		0.415V Voltage of HO2S 0.515V(at pumping current OFF)	• PCM
Diagnosis Time		Continuous (more than 76.5 sec.failure for every 90 sec.test)	
MIL On Condition		2 driving cycles	

SPECIFICATION EEAC4EF0

(REFERENCE ONLY)

Test Condition	HO2S Voltage(Sensor1)	HO2S Voltage(Sensor2)
HO2S Signal at idle after warm-up	Signal is normally switching from rich to lean more than 3 times in 10 sec.	Signal is normally above 0.6V.
HO2S signal at open circuit (Pumping current OFF)	Approx.	0.45V
HO2S signal at open circuit (Pumping current ON)	Approx	. 3.5V

SCHEMATIC DIAGRAM E46D2B2A

FL -286 FUEL SYSTEM

SIGNAL WAVEFORM AND DATA E01E55D1

Refer to DTC P0151.

MONITOR DTC STATUS EAB3A8C1

Refer to DTC P0151.

TERMINAL AND CONNECTOR INSPECTION EA0211DE

Refer to DTC P0151.

SIGNAL CIRCUIT INSPECTION E195176C

- 1. IG "OFF" and disconnect HO2S(B2/S1) connector.
- 2. IG "ON" and ENG "OFF"
- 3. Measure voltage between termianl 3 of HO2S(B2/S1) harness connector and chassis ground.

Specification:

Approx. 3.5V - when pumping current is ON Approx. 0.45V - when pumping current is OFF

4. Is the measured voltage within specification?

YES

Go to "Ground circuit inspection" procedure.

NO

Repair open in harness, and go to "Verification of Vehicle Repair" prcedure.

GROUND CIRCUIT INSPECTION EABF430F

- 1. IG "ON" and disconnect HO2S(B2/S1) connector.
- 2. Measure voltage between terminal 3 of HO2S(B2/S1) harness connector and chassis ground.
- 3. Measure voltage between terminals 3 and 4 of HO2S(B2/S1) harness connector.

Specification: Voltage difference between measurement "A" and "B" is below 200mV.

4. Is the measured voltage within specification?

Go to "Component inspection" procedure.

NO

Repair open or contact resistance in harness, and go to "Verification of Vehicle Repair" prcedure.

FL -287

SEPFL6416N

COMPONENT INSPECTION

- 1. Check the Signal waveform of HO2S
 - 1) IG "OFF" and connect HO2S connector.
 - 2) Engine start.
 - 3) After warming-up, monitor signal waveform of HO2S with scantool.

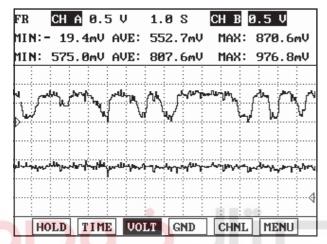


Fig) Signal waveform of front(the upper) and rear(the lower) HO2S at idle

4) Is the sensor switching properly?

ولین سامانه دیجیتال تعمیرکاران خودر (YES

Go to "Check HO2S" as indicated below.

NO

Substitute with a known - good HO2S and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

Check HO2S

- 1) IG "OFF" and disconnect HO2S connector.
- Check that the HO2S is securely installed.
- 3) Check the HO2S for contamination or damage
- 4) Is the sensor normal?

YES

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

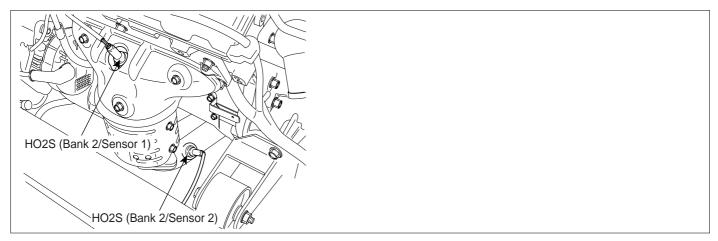
NO

Substitute with a known - good HO2S and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

FL -288 FUEL SYSTEM

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. Before or after testing PCM on the vehicle, use this function before reusing the PCM.

VERIFICATION OF VEHICLE REPAIR EBFFFAE1



FL -289

DTC P0157 HO2S CIRCUIT LOW VOLTAGE (BANK 2 / SENSOR 2)

COMPONENT LOCATION E1EB46F6

SGHFL7312N

GENERAL DESCRIPTION E564568C

The rear heated oxygen sensor is mounted on the rear side of the Catalytic Converter (warm-up catalytic converter) or in the rear exhaust pipe, which is able to detect catalyst efficiency. The rear heated oxygen sensor (HO2S) produces a voltage between 0V and 1V. This rear heated oxygen sensor is used to estimate the oxygen storage capability. If a catalyst has good conversion properties, the oxygen fluctuations are smoothed by the oxygen storage capacity of the catalyst. If the conversion provided by the catalyst is low due to aging, poisoning or misfiring, then the oxygen fluctuations are similar to signals from the front oxygen sensor.

DTC DESCRIPTION E6A0EC21

Checking output signals from HO2S under detecting condition, if an output signal is below 0.04V for more than predetermined time, PCM sets P0157. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

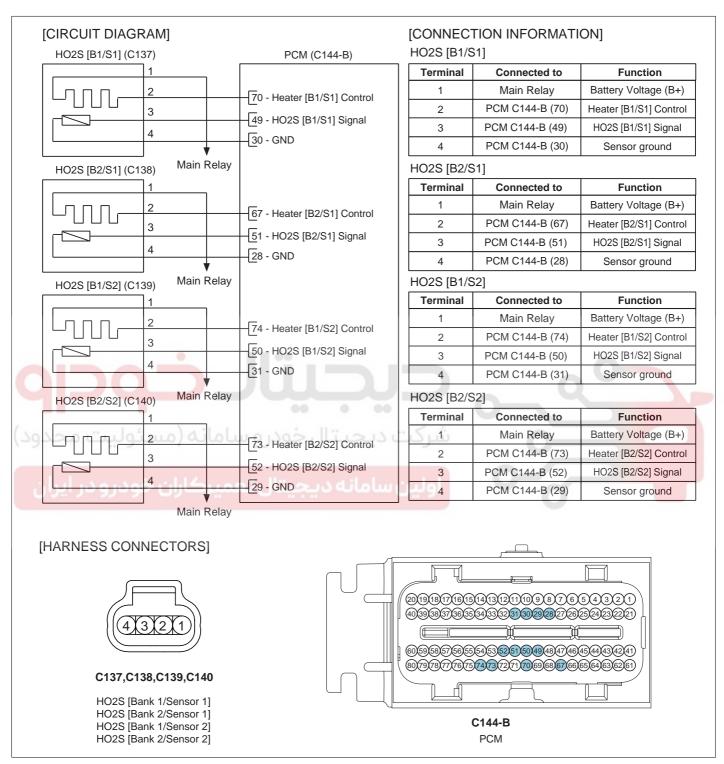
DTC DETECTING CONDITION E38D629D

Item	Detecting Condition	Possible cause
DTC Strategy	Monitor signal voltage	
Enable Conditions	Battery voltage 10VEngine running 60 sec.Engine warm-up state	Poor connection Short to ground in harness
Threshold value	The voltage of HO2S(B2/S2) < 0.04V	• HO2S(B2/S2) • PCM
Diagnosis Time	Continuous (more than 12.5 sec. failure for every 15 sec.test)	
MIL On Condition	2 Driving Cycles	

FL -290 FUEL SYSTEM

SPECIFICATION E489B2AA

(REFERENCE ONLY)


Test Condition	HO2S Voltage(Sensor1)	HO2S Voltage(Sensor2)
HO2S Signal at idle after warm-up	Signal is normally switching from rich to lean more than 3 times in 10 sec.	Signal is normally above 0.6V.
HO2S signal at open circuit (Pumping current OFF)	Approx.	0.45V
HO2S signal at open circuit (Pumping current ON) Appr		. 3.5V

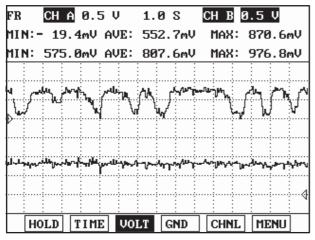
FL -291

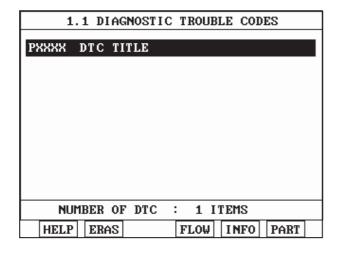
SCHEMATIC DIAGRAM ECO3F7

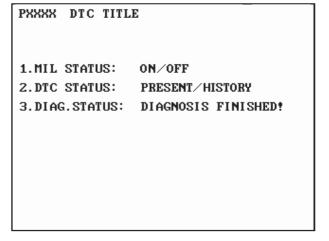
UFBG250B

FL -292 FUEL SYSTEM

SIGNAL WAVEFORM AND DATA EF55AB68




Fig) Signal waveforms of front HO2S(the upper) and rear HO2S(the lower)


SEPFL6415N

After warming-up, if accelerator pedal is released suddenly around 4000rpm, the HO2S signal reading will be lower than 200mV resulting from Fuel cut-off for the moment. Conversely, if suddenly accelerator pedal is depressed, HO2S signal reading will be around 0.6V ~1.0V. At idle, Normally HO2S signal will switch from lean to rich with 3 Hz. At higher engine RPM, the switching frequency increases.

MONITOR DTC STATUS E2CEE11

- 1. Check DTC Status
 - Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu.
 - 4) Read "DTC Status" parameter.

SGHFL7305L

5) Is "Present" Fault displayed?

YES

FL -293

Go to "Terminal and connector inspection" procedure.

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

TERMINAL AND CONNECTOR INSPECTION EOBA757E

- 1. Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- 2. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

Repair as necessary and go to "Verification of Vehicle Repair" procedure

NO

Go to " Signal Circuit Inspection " procedure.

SIGNAL CIRCUIT INSPECTION E60E2156

- 1. IG "OFF" and disconnect HO2S(B2/S2)
- 2. IG "ON"
- 3. Measure voltage between terminal 3 of HO2S(B2/S2) harness connector and chassis ground.

Specification: Approx. 3.5V - when pumping current is ON Approx. 0.45V - when pumping current is OFF

4. Is the measured voltage within specification?

YES

Go to "Component Inspection" procedure.

NO

Repair short to ground in harness, and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION ED7E2D18

- 1. Check the Signal waveform of HO2S
 - 1) IG "OFF" and connect HO2S connector.
 - 2) Engine start.
 - After warming-up, monitor signal waveform of HO2S with scantool.

WWW.DIGITALKHODRO.COM

021 62 99 92 92

FL -294 FUEL SYSTEM

Fig) Signal waveform of front(the upper) and rear(the lower) HO2S at idle

SEPFL6416N

4) Is the sensor switching properly?

YES

Go to "Check HO2S" as indicated below.

NO

Substitute with a known - good HO2S and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

- 2. Check HO2S
 - 1) IG "OFF" and disconnect HO2S connector.
 - Check that the HO2S is securely installed.
 - 3) Check the HO2S for contamination or damage
 - 4) Is the sensor normal?

YES

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

NO

Substitute with a known - good HO2S and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

NOTE

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. Before or after testing PCM on the vehicle, use this function before reusing the PCM

VERIFICATION OF VEHICLE REPAIR ECF25F13

After a repair, it is essential to verify that the fault has been corrected.

1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode

FL -295

- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC

NO

Go to the applicable troubleshooting procedure.

FL -296 FUEL SYSTEM

DTC P0158 HO2S CIRCUIT HIGH VOLTAGE (BANK 2 / SENSOR 2)

COMPONENT LOCATION E548C426

Refer to DTC P0157.

GENERAL DESCRIPTION EC320676

Refer to DTC P0157.

DTC DESCRIPTION E26DF812

Checking output signals from HO2S under detecting condition, if an output signal is above 1.3V for more than predetermined time, PCM sets P0158. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION ED97B553

Item	Detecting Condition	Possible cause
DTC Strategy	Monitor signal voltage	
Enable Conditions	 Battery voltage 10V Engine running 60 sec. Engine warm-up state 	Poor connectionShort to battery in harness
Threshold value	• The voltage of HO2S(B2/S2) > 1.3V	• HO2S(B2/S2)
Diagnosis Time	Continuous (more than 12.5 sec.failure for every 15 sec.test)	• PCM
MIL On Condition	2 Driving Cycles	

SPECIFICATION E74F0485

(REFERENCE ONLY)

Test Condition	HO2S Voltage(Sensor1)	HO2S Voltage(Sensor2)
HO2S Signal at idle after warm-up	Signal is normally switching from rich to lean more than 3 times in 10 sec.	Signal is normally above 0.6V.
HO2S signal at open circuit (Pumping current OFF)	Approx.	0.45V
HO2S signal at open circuit (Pumping current ON)	Approx	. 3.5V

SCHEMATIC DIAGRAM E599F728

Refer to DTC P0157.

SIGNAL WAVEFORM AND DATA EF8BA8C2

Refer to DTC P0157.

FL -297

MONITOR DTC STATUS EEOOD

Refer to DTC P0157.

TERMINAL AND CONNECTOR INSPECTION EDGEFD38

Refer to DTC P0157.

SIGNAL CIRCUIT INSPECTION E75D5B2I

- IG "OFF" and disconnect HO2S(B2/S2) connector.
- 2. IG "ON" and ENG "OFF"
- Measure voltage between terminal 3 of HO2S(B2/S2) harness connector and chassis ground.

Specification:

Approx. 3.5V - when pumping current is ON Approx. 0.45V - when pumping current is OFF

4. Is the measured voltage within specification?

YES

Go to "Component Inspection" procedure.

شرکت دیجیتال خودر و سامانه (مسئولیت <mark>۱۸۵</mark>

Repair short to battery in harness, and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION E200BEBE

- Check the Signal waveform of HO2S
 - 1) IG "OFF" and connect HO2S connector.
 - 2) Engine start.
 - 3) After warming-up, monitor signal waveform of HO2S with scantool.

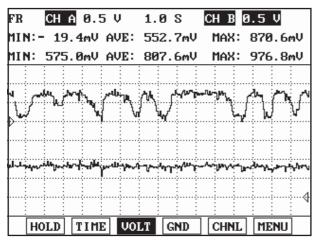


Fig) Signal waveform of front(the upper) and rear(the lower) HO2S at idle

SEPFL6416N

FL -298 FUEL SYSTEM

4) Is the sensor switching properly?

Go to "Check HO2S" as indicated below.

Substitute with a known - good HO2S and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

2. Check HO2S

- 1) IG "OFF" and disconnect HO2S connector.
- 2) Check that the HO2S is securely installed.
- 3) Check the HO2S for contamination or damage
- 4) Is the sensor normal?

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

NO

Substitute with a known - good HO2S and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

اولین سامانه دیجیتال تعمیرکاران خودر و NOTE 🔃

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. Before or after testing PCM on the vehicle, use this function before reusing the PCM

VERIFICATION OF VEHICLE REPAIR E638BA30

Refer to DTC P0157.

FL -299

DTC P0160 HO2S CIRCUIT NO ACTIVITY DETECTED (BANK 2 / SENSOR 2)

COMPONENT LOCATION E6879410

Refer to DTC P0157.

GENERAL DESCRIPTION EA953F00

Refer to DTC P0157.

DTC DESCRIPTION E05D96B6

Checking output signals from HO2S under detecting condition, if an output voltage is approx.0.45V or 3.5V for more than predetermined time, PCM sets P0160. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION E01753E4

Ite	em	Detecting Condition Possible cause	
DTC S	trategy	Monitor signal voltage	0
Enable C	onditions	 Battery voltage 10V Engine running 60 sec. Engine warm-up state No disable faults 	
Thresh-	Case 1	1.2V Voltage of HO2S 3.9V (at pumping current ON)	Poor connectionOpen in harnessHO2S(B2/S2)
old value	Case 2	0.415V Voltage of HO2S 0.515V	
Diagnosis Time		Continuous (more than 76.5 sec.failure for every 90 sec.test)	
MIL On Condition • 2 Driving Cycles			

SPECIFICATION E2A07954

(REFERENCE ONLY)

Test Condition	HO2S Voltage(Sensor1)	HO2S Voltage(Sensor2)
HO2S Signal at idle after warm-up	Signal is normally switching from rich to lean more than 3 times in 10 sec.	Signal is normally above 0.6V.
HO2S signal at open circuit (Pumping current OFF)	Approx.	0.45V
HO2S signal at open circuit (Pumping current ON)	Approx	. 3.5V

SCHEMATIC DIAGRAM E1F76729

Refer to DTC P0157.

FL -300 FUEL SYSTEM

SIGNAL WAVEFORM AND DATA E6207B7C

Refer to DTC P0157.

MONITOR DTC STATUS E9745980

Refer to DTC P0157.

TERMINAL AND CONNECTOR INSPECTION ESECUCIC

Refer to DTC P0157.

SIGNAL CIRCUIT INSPECTION E154D939

- 1. IG "OFF" and disconnect HO2S(B2/S2) connector.
- 2. IG "ON" and ENG "OFF"
- 3. Measure voltage between terminal 3 of HO2S(B2/S2) harness connector and chassis ground.

Specification:

Approx. 3.5V - when pumping current is ON Approx. 0.45V - when pumping current is OFF

4. Is the measured voltage within specification?

YES

Go to "Ground Circuit Inspection" procedure.

NO

Repair open in harness, and go to "Verification of Vehicle Repair" procedure.

GROUND CIRCUIT INSPECTION ECCFF515

- 1. IG "ON" and disconnect HO2S(B2/S2) connector.
- 2. Measure voltage between terminal 3 of HO2S(B2/S2) harness connector and chassis ground.
- 3. Measure voltage between terminals 3 and 4 of HO2S(B2/S2) harness connector.

Specification: Voltage difference between measurement "A" and "B" is below 200mV.

4. Is the measured voltage within specification?

YES

Go to "Component Inspection" procedure.

NO

Repair open in harness, and go to "Verification of Vehicle Repair" procedure.

FL -301

SEPFL6416N

COMPONENT INSPECTION

- 1. Check the Signal waveform of HO2S
 - 1) IG "OFF" and connect HO2S connector.
 - 2) Engine start.
 - 3) After warming-up, monitor signal waveform of HO2S with scantool.

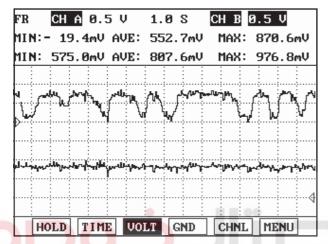


Fig) Signal waveform of front(the upper) and rear(the lower) HO2S at idle

4) Is the sensor switching properly?

ولین سامانه دیجیتال تعمیرکاران خودر (YES

Go to "Check HO2S" as indicated below.

NO

Substitute with a known - good HO2S and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

2. Check HO2S

- 1) IG "OFF" and disconnect HO2S connector.
- Check that the HO2S is securely installed.
- 3) Check the HO2S for contamination or damage
- 4) Is the sensor normal?

YES

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

NO

Substitute with a known - good HO2S and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

FL -302 FUEL SYSTEM

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. Before or after testing PCM on the vehicle, use this function before reusing the PCM

VERIFICATION OF VEHICLE REPAIR E51B6AC5

Refer to DTC P0157.

FL -303

DTC P0171 SYSTEM TOO LEAN (BANK 1) DTC P0174 SYSTEM TOO LEAN (BANK 2)

GENERAL DESCRIPTION ESECUTED

In order to provide the best possible combination of drivability, fuel economy and emission control, the PCM uses a closed loop air/fuel metering system. The PCM monitors the HO2S signal voltage and adjusts fuel delivery as needed. Changes in fuel delivery will be indicated by the long-term and the short-term fuel trim values. The ideal fuel trim value is around 0%. The PCM will add fuel when the HO2S signal is indicating a lean condition. Additional fuel is indicated by fuel trim values that are above 0%. The PCM will reduce fuel when the HO2S signal is indicating a rich condition. Reduction in fuel is indicated by fuel trim values that are below 0%. The DTC relevant to fuel trim will be set when the amount reaches excessive levels because of a lean or rich condition.

DTC DESCRIPTION E8267376

Checking the fuel trim value under detecting condition, if its average exceeds the limit over certain period, PCM sets P0171/P0174. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION E3452337

Item	Detecting Condition	Possible cause	
DTC Strategy	Monitor the fuel trim value		
Enable Conditions	60 (140) Engine coolant temperature 115 (239)	 Air leakage Improper fuel pressure PCV valve stuck Clogging of injector 	
Threshold value	Average of short term fuel trim > 0.8 and Average of long term fuel trim > 1.2	o Glogging of injector	
Diagnosis Time	Continuous		
MIL On Condition	2 Driving Cycles		

MONITOR DTC STATUS E2B25BD8

- 1. Monitor DTCs related to MAFS, MAPS, ECTS, Injector or CVVT items with scantool.
- 2. Are related DTCs present?

YES

Do all repairs associated with those codes before proceeding with this procedure.

NO

Go to "System Inspection" procedure.

SYSTEM INSPECTION FEFAUXCD

Check air leakage

FL -304 FUEL SYSTEM

1) Visually/physically inspect the intake/exhaust system for following items

Vacuum hoses for splits, kinks and improper connections.

Throttle body gasket

Gasket between intake manifold and cylinder head

Seals between intake manifold and fuel injectors

Exhaust system between HO2S and three way catalyst for air leakage

2) Has a problem been found?

Repair or replace it which has a problem, and go to "Verification of Vehicle Repair" procedure.

Go to "Check the fuel line" as follows

2. Check the fuel line

1) Check the fuel line for following items

Connector connection state

Damage/ connection state for vacuum hoses connected to fuel line

Bent/ pressed/ twisted fuel line or fuel leakage

2) Has a problem been found?

YES

Repair or replace it which has a problem, and go to "Verification of Vehicle Repair" procedure.

ولین سامانه دیجیتال تعمیرکاران خودرر NO

Go to "Check fuel pressure" as follows

Check fuel pressure

NOTE

- 1. Be cautious that Fuel is explosive and an empty fuel tank can still contain explosive gases. When working on fuel system make sure to supply adequate ventilation to the work area. Do not smoke, and keep sparks and open flames away.
- 2. The fuel system remains under pressure when the engine is not running. Release fuel system pressure before disconnecting any fuel line to reduce the chance of presonal injury or fire damage to vehicle components.
- 1) IG "OFF" and disconnect Fuel Pump Relay in Junction Box.
- 2) Start-up and wait until it stops itself.
- 3) IG "OFF" and connect Fuel Pump Relay.
- 4) Install the fuel pressure gauge to the delivery pipe with the fuel pressure gauge adaptor.
- 5) Activate the fuel pump, and with fuel pressure applied, check that there is no fuel leakage from the pressure gauge or connection part.
- Measure the fuel pressure at idle.

Specification: 374.6 ~ 384.4 kPa(3.82 ~ 3.92 kg/cm², 54.3 ~ 55.8 psi)

FL -305

7) Is the measured fuel pressure within specifications?

Go to "Component Inspection" procedure.

NO

Repair or replace according to the below table. And then, go to "Verification of Vehicle Repair"procedure.

Condition	Possible Cause
Fuel Pressure is too low	Fuel filter,fuel pressure regulator, in-tank fuel hose or the fuel pump
Fuel Pressure is too high	Fuel pressure regulator, hose or pipe

COMPONENT INSPECTION EC94CD7

- 1. Check PCV
 - 1) IG "OFF" and remove PCV valve from rocker cover.
 - 2) Insert a thin stick into the PCV valve from the threaded side and verify that the plunger is moving.
 - 3) Is the PCV valve normally moving?

، دیجیتال خودر و سامانه (مسئولیا **YES** حدود

Go to "Check injector" as follows.

NO

Replace it, and go to "Verification of Vehicle Repair" procedure.

- 2. Check injector for normal operation
 - 1) Start engine.
 - 2) Check for RPM drop during injector actuation test.
 - 3) Is there any cylinder with no change in RPM or only a small change in RPM?

YES

Clear DTC and Test-drive under enable conditions above-mentioned. After the test, If this DTC is set, go to "Inspection & Repair" procedure. If not, troubleshooting is completed.

NO

Replace injector, and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR E7B7A400

After a repair, it is essential to verify that the fault has been corrected.

1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode

FL -306 FUEL SYSTEM

2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions

- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC

NO

Go to the applicable troubleshooting procedure.

FL -307

DTC P0172 SYSTEM TOO RICH (BANK 1) DTC P0175 SYSTEM TOO RICH (BANK 2)

GENERAL DESCRIPTION E4843F1

In order to provide the best possible combination of drivability, fuel economy and emission control, the PCM uses a closed loop air/fuel metering system. The PCM monitors the HO2S signal voltage and adjusts fuel delivery as needed. Changes in fuel delivery will be indicated by the long-term and the short-term fuel trim values. The ideal fuel trim value is around 0%. The PCM will add fuel when the HO2S signal is indicating a lean condition. Additional fuel is indicated by fuel trim values that are above 0%. The PCM will reduce fuel when the HO2S signal is indicating a rich condition. Reduction in fuel is indicated by fuel trim values that are below 0%. The DTC relevant to fuel trim will be set when the amount reaches excessive levels because of a lean or rich condition.

DTC DESCRIPTION EGAEA85C

Checking the fuel trim value under detecting condition, if its average exceeds the limit over certain period, PCM sets P0172/P0175. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION EF72491E

Item	Detecting Condition	Possible cause
DTC Strategy	Monitor the fuel trim value	0
Enable Conditions	60 (140) Engine coolant temperature 115 (239)	 Blocking of intake system Fuel leakage in injector Improper fuel pressure
Threshold value	 Average of short term fuel trim < 1.2 and Average of long term fuel trim < 0.8 	
Diagnosis Time	Continuous	
MIL On Condition	2 Driving Cycles	

MONITOR DTC STATUS EB483D29

- Monitor DTCs related to MAFS, MAPS, ECTS, Injector or CVVT items with scantool.
- 2. Are related DTCs present?

YES

Do all repairs associated with those codes before proceeding with this procedure.

NO

Go to "System Inspection" procedure.

SYSTEM INSPECTION E264BD54

Check blocking of intake system

FL -308 FUEL SYSTEM

1) Inspect the intake system for the following items:

Throttle body gasket and damage

Blocking in intake manifold and injector caused by any foreign substance

2) Has a problem been found?

Repair or replace it, and go to "Verification of Vehicle Repair" procedure.

Go to " Check fuel pressure" as follows.

Check fuel pressure

- Be cautious that Fuel is explosive and an empty fuel tank can still contain explosive gases. When working on fuel system make sure to supply adequate ventilation to the work area. Do not smoke, and keep sparks and open flames away.
- 2. The fuel system remains under pressure when the engine is not running. Release fuel system pressure before disconnecting any fuel line to reduce the chance of presonal injury or fire damage to vehicle components.
- 1) IG "OFF" and disconnect Fuel Pump Relay in Junction Box.
- 2) Start the engine and wait until the engine stalls.
- 3) IG "OFF" and connect Fuel Pump Relay.
- 4) Install the fuel pressure gauge to the delivery pipe with the fuel pressure gauge adaptor.
- 5) Activate the fuel pump, and with fuel pressure applied, check that there is no fuel leakage from the pressure gauge or connection part.
- 6) Measure the fuel pressure at idle.

Specification: 374.6 ~ 384.4 kPa(3.82 ~ 3.92 kg/cm², 54.3 ~ 55.8 psi)

7) Is the measured fuel pressure within specifications?

Go to "Check fuel leakage in injector" as follows.

Repair or replace according to the below table. And then, go to "Verification of Vehicle Repair" procedure.

Condition	Possible Cause
Fuel Pressure is too low	Fuel filter,fuel pressure regulator, in-tank fuel hose or the fuel pump
Fuel Pressure is too high	Fuel pressure regulator, hose or pipe

- Check fuel leakage in injector
 - IG "OFF" after checking the fuel pressure test.

FL -309

2) Stop engine and check for a change in the fuel pressure gauge reading for 5 minutes.

Specification: After engine stops, fuel gauge reading is maintained for 5 minutes.

3) Is the fuel gauge reading maintained?

Clear DTC and Test-drive under enable conditions above-mentioned. After the test, If this DTC is set, go to "Inspection & Repair" procedure. If not, troubleshooting is completed.

There is a fuel leakage in injector. Replace it, and go to "Verification of Vehicle Repair" procedure.

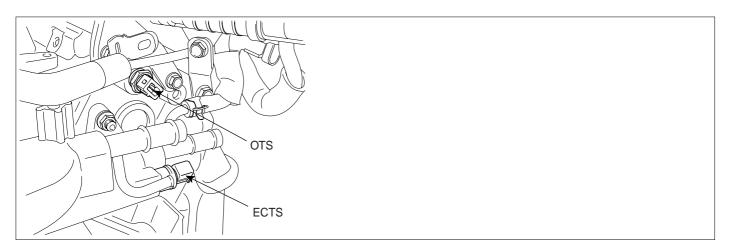
VERIFICATION OF VEHICLE REPAIR EB59DF93

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

YES

System performing to specification at this time. Clear the DTC


NO

Go to the applicable troubleshooting procedure.

FL -310 FUEL SYSTEM

DTC P0196 ENGINE OIL TEMP. SENSOR RANGE / PERFORMANCE

COMPONENT LOCATION EE3D28E4

SGHFL7315N

GENERAL DESCRIPTION EBA78525

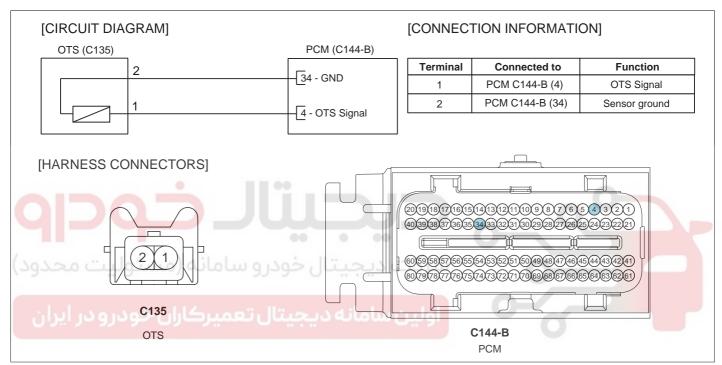
The fluid of the CVVT is the engine oil and its density changes according to the engine oil temperature. At this time the Oil Temperature Sensor (OTS) helps compensate against the temperature differences. The Oil Temperature Sensor measures the engine oil temperature before the engine oil comes into the Oil-flow Control Valve (OCV).

According to the measured temperature, the Engine Control Module (PCM) compensates the oil-flow control valve oper-

DTC DESCRIPTION EBCADADC

Checking the oil temperture, coolant temperature and intake air temperature every 25 sec. under detecting condition, if the difference in temperature at start-up exceeds threshold value, PCM sets P0196. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION EE27F6A7

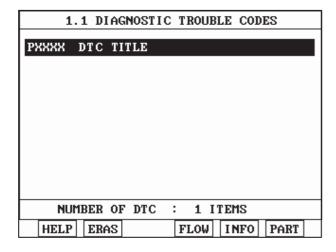

Ite	em	Detecting Condition	Possible cause
DTC S	Strategy	Determines if the oil temperature value is rational, compared to coolant and intake air temperature.	
Enable Condi-	Case1	Engine run time after startup < 30 secSoak period required > 300 min	
tions	Case2	Minimum engine run time > 800 sec	
Throob	Case1	The difference in temperature between oil and coolant temperatures at startup. > 35 (63°F)	Faulty OTS PCM
Thresh- old value	Case2	The difference in temperature between oil temperature and intake air temperature at startup amp;amp;gt; 35 (63°F)	
Diagnos	sis Time	Continuous (More than 800 sec.)	
MIL On (Condition	NO MIL ON(DTC only)	

FL -311

SPECIFICATION ECBODEC6

Temperature(/)	Resistance(k)
-20 / -4	16.52k
20 / 68	2.45k
80 / 176	0.29k

SCHEMATIC DIAGRAM E9AEB721



UFBG256A

MONITOR DTC STATUS EE7270A7

- 1. Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu.
 - 4) Read "DTC Status" parameter.

FL -312 FUEL SYSTEM

1.MIL STATUS: ON/OFF
2.DTC STATUS: PRESENT/HISTORY
3.DIAG.STATUS: DIAGNOSIS FINISHED!

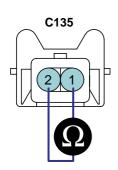
SGHFL7305L

5) Is "Present" Fault displayed?

Go to "Component Inspection" procedure.

NO

Fault is intermittent caused by PCM memory was not cleared after repair. Erase DTC and drive the vehicle to satisfy the enable condition then, go to "Component Inspection" procedure.


COMPONENT INSPECTION E0F892B0

- 1. Check resistance of OTS
 - 1) IG "ON" & ENG "OFF"
 - 2) Monitor Oil Temperature parameter on the scantool
 - 3) IG "OFF" & ENG "OFF"
 - 4) Disconnect OTS connector.
 - 5) Measure resistance between terminal 1 and 2 of OTS connector after checking out the oil temperature with scantool

SPECIFICATION:

Temperature(/)	Resistance(k)
-20 / -4	16.52k
20 / 68	2.45k
80 / 176	0.29k

FL -313

1. OTS Signal 2. OTS Ground

	1.2 CURRENT	DATA 05/	79
×	COOLANT TEMP. SNSR	195.8°F	^
	OIL TEMPERATURE	201.2°F	
×	INT. AIR TEMP. SNSR	96.8 °F	
	MAL.INDICATOR LAMP	OFF	
	BATTERY VOLTAGE	12.3 V	
	MAIN RELAY	ON	
	MASS AIR FLOW	1.1 g∕s	
	MAP SENSOR	14.5 psi	
			T
	FIX SCRN FULL PA	RT GRPH HELP	٠

SBLF26826L

6) Is the measured resistance within specification?

Go to "Verification of Vehicle Repair" procedure.

NO

Substitute with a known - good OTS and check for proper operation. If the problem is corrected, replace OTS and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR EF161B7B

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

YES

System performing to specification at this time. Clear the DTC

NO

Go to the applicable troubleshooting procedure.

FL -314 FUEL SYSTEM

DTC P0197 ENGINE OIL TEMP. SENSOR LOW INPUT

COMPONENT LOCATION EAE91C94

Refer to DTC P0196.

GENERAL DESCRIPTION E32F8550

Refer to DTC P0196.

DTC DESCRIPTION EA217CDA

Checking output signals from oil temperture sensor every 15 sec. under detecting condition, if an signal is low for more than 12.5 sec., PCM sets P0197. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION EB51F826

Item Detecting Condition		Detecting Condition	Possible cause
DTC S	DTC Strategy • Signal low		
Enable Condi-	Case 1	Engine running 60 sec Coolant temperature 110 (230)	Draw as marching
tions	Case 2	Engine running 90 sec.	Poor connectionShort to ground in harness
Thresh old value		Oil temperature sensor's signal	Oil temp.sensorPCM
Diagnosis Time		Continuous (More than 12.5 sec.failure for every 15 sec.test)	
MIL On Condition • 2 Driving Cycles			

SPECIFICATION EODB844E

Temperature(/)	Resistance(k)
-20 / -4	16.52k
20 / 68	2.45k
80 / 176	0.29k

SCHEMATIC DIAGRAM EF2C7F77

Refer to DTC P0196.

MONITOR DTC STATUS E90E5A29

Refer to DTC P0196.

TERMINAL AND CONNECTOR INSPECTION E2E4025B

Refer to DTC P0196.

FL -315

SIGNAL CIRCUIT INSPECTION ECF7C807

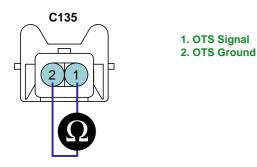
- 1. Check Voltage
 - 1) IG "OFF" & ENG "OFF"
 - 2) Disconnect OTS connector
 - 3) IG "ON" & ENG "OFF"
 - 4) Measure voltage between harness terminal 1 of OTS and chassis ground.

Specification: Approx. 5V

5) Is the measured voltage within specification?

Go to "Component Inspection" procedure.

Repair short to ground in harness, and go to "Verification of Vehicle Repair" procedure.


COMPONENT INSPECTION ED0509

- 1. Check resistance of OTS
 - 1) IG "ON" & ENG "OFF"
 - 2) Monitor Oil Temperature parameter on the scantool
 - 3) IG "OFF" & ENG "OFF"
 - 4) Disconnect OTS connector.
 - 5) Measure resistance between terminal 1 and 2 of OTS connector(Component Side)

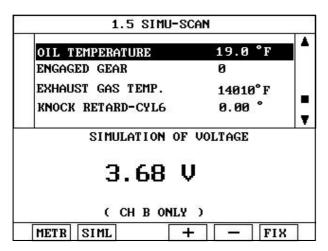
SPECIFICATION:

Temperature(/)	Resistance(k)
-20 / -4	16.52k
20 / 68	2.45k
80 / 176	0.29k

FL -316 FUEL SYSTEM

SBLF26487L

6) Is the measured resistance within specification?



Go to "Check PCM" as follows.

NO

Substitute with a known - good OTS and check for proper operation. If the problem is corrected, replace OTS and go to "Verification of Vehicle Repair" procedure.

- Check PCM
 - 1) Ignition "OFF" and Connect Scantool
 - 2) Ignition"ON " & Engine "OFF"
 - 3) Select simulation function on scantool.
 - 4) Simulate voltage at terminal "1" of OTS signal harness connector.

OTS Signal
 OTS Ground

SBLF26489L

5) Does the OTS signal value changes according to simulation voltage?

YES

Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage. Repair or replace if necessary and go to "Verification of Vehicle Repair" procedure

FL -317

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. After testing PCM on the vehicle, use this function before reusing the PCM

VERIFICATION OF VEHICLE REPAIR E341B66

Refer to DTC P0196.

FL -318 FUEL SYSTEM

DTC P0198 ENGINE OIL TEMP. SENSOR HIGH INPUT

COMPONENT LOCATION EAD9855F

Refer to DTC P0196.

GENERAL DESCRIPTION E8C37119

Refer to DTC P0196.

DTC DESCRIPTION E878A100

Checking output signals from oil temperture sensor every 15 sec. under detecting condition, if an signal is high for more than 12.5 sec., PCM sets P0198. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION E4F72A3D

Item Detecting Condition		Detecting Condition	Possible cause
DTC S	DTC Strategy • Signal low		
Enable Condi-	Case 1	Engine running 60 sec Coolant temperature 110 (230)	Poor connection One of the best to be the section of the best to be the section of the best to be the section of the
tions	Case 2	Engine running 90 sec.	 Open or short to battery in signal harness
Thresh old value		Oil temperature sensor's signal	Open in ground harnessOil temp.sensor
Diagnosis Time		Continuous (More than 12.5 sec.failure for every 15 sec.test)	• PCM
MIL On Condition		2 Driving Cycles	

SPECIFICATION E25C4D4F

Temperature(/)	Resistance(k)
-20 / -4	16.52k
20 / 68	2.45k
80 / 176	0.29k

SCHEMATIC DIAGRAM E69DE59B

Refer to DTC P0196.

MONITOR DTC STATUS ED9AC82D

Refer to DTC P0196.

TERMINAL AND CONNECTOR INSPECTION E84D519A

Refer to DTC P0196.

FL -319

SIGNAL CIRCUIT INSPECTION

- 1. Check Voltage
 - 1) IG "OFF" & ENG "OFF"
 - 2) Disconnect OTS connector
 - 3) IG "ON" & ENG "OFF"
 - 4) Measure voltage between harness terminal 1 of OTS and chassis ground.

Specification: Approx. 5V

5) Is the measured voltage within specification?

YES

Go to "Ground Circuit Inspection" procedure.

NO

Go to "Check open in harness" as follows.

- 2. Check open in harness
 - 1) IG "OFF" & ENG "OFF"
 - 2) Disconnect OTS and PCM connector.
 - 3) Measure resistance between terminal 1 of OTS harness connector and terminal 4 of PCM harness connector (C144-B).

Specification: Approx. below 1

4) Is the measured resistance within specification?

YES

Go to "Ground Circuit Inspection" procedure.

NO

Repair or replace open in harness, and then go to "Verification of Vehicle Repair" procedure.

GROUND CIRCUIT INSPECTION EF6F3306

- 1. IG "OFF" & ENG "OFF"
- Disconnect OTS connector and IG "ON"
- Measure voltage between terminal 1 of OTS harness connector and chassis ground.
- 4. Measure voltage between terminals 1 and 2 of OTS harness connector.

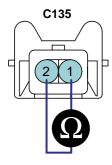
Specification: Measurement "A" - Measurement 'B' = Approx. below 200mV

5. Is the measured voltage within specification?

FL -320 FUEL SYSTEM

YES

Go to "Component Inspection" procedure


Repair or replace contact resistance or open in harness and then, go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION E80663FF

- Check resistance of OTS
 - 1) IG "ON" & ENG "OFF"
 - 2) Monitor Oil Temperature parameter on the scantool
 - 3) IG "OFF" & ENG "OFF"
 - 4) Disconnect OTS connector.
 - 5) Measure resistance between terminal 1 and 2 of OTS connector(Component Side)

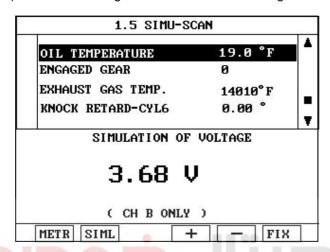
SPECIFICATION:

Temperature(/)	Resistance(k)
-20 / -4	16.52k
حودرو سامانه (₆₈ / ₈ یت محدود)	2.45k
80 / 176	0.29k

1. OTS Signal 2. OTS Ground

SBLF26487L

6) Is the measured resistance within specification?


Go to "Check PCM" as follows.

NO

Substitute with a known - good OTS and check for proper operation. If the problem is corrected, replace OTS and go to "Verification of Vehicle Repair" procedure.

FL -321

- 2. Check PCM
 - 1) Ignition "OFF" and Connect Scantool
 - 2) Ignition"ON " & Engine "OFF"
 - 3) Select simulation function on scantool.
 - 4) Simulate voltage at terminal "1" of OTS signal harness connector.

SBLF26489L

Does the OTS signal value changes according to simulation voltage?

شرکت دیچیتال خودرو سامانه (مسئولر YES

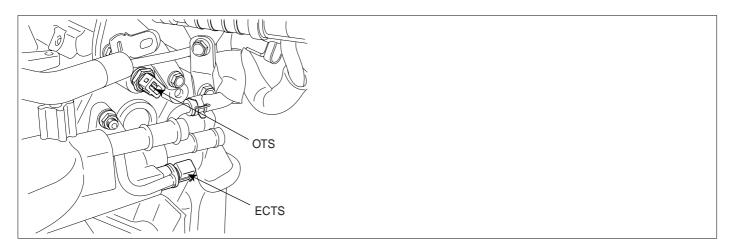
Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage. Repair or replace if necessary and go to "Verification of Vehicle Repair" procedure

NO

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

NOTE

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. After testing PCM on the vehicle, use this function before reusing the PCM


VERIFICATION OF VEHICLE REPAIR E7D943D2

Refer to DTC P0196.

FL -322 FUEL SYSTEM

DTC P0217 ENGINE COOLANT OVER TEMPERATURE CONDITION

COMPONENT LOCATION EA163AFF

SGHFL7315N

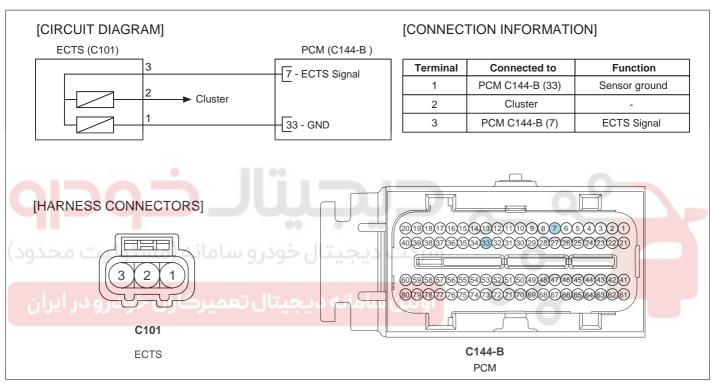
GENERAL DESCRIPTION E0969D4

The Engine Coolant Temperature Sensor (ECTS) is located in the engine coolant passage of the cylinder head for detecting the engine coolant temperature. The ECTS uses a thermistor whose resistance changes with the temperature. The electrical resistance of the ECTS decreases as the temperature increases, and increases as the temperature decreases. The reference 5 V in the PCM is supplied to the ECTS via a resistor in the PCM. That is, the resistor in the PCM and the thermistor in the ECTS are connected in series. When the resistance value of the thermistor in the ECTS changes according to the engine coolant temperature, the output voltage also changes. During cold engine operation the PCM increases the fuel injection duration and controls the ignition timing using the information of engine coolant temperature to avoid engine stalling and improve drivability.

DTC DESCRIPTION EBE2C862

Checking the coolant temperature under detecting condition, if the coolant temperature exceeds the threshold temperature under normal operation loads, PCM sets P0217. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION EDFA9BAS

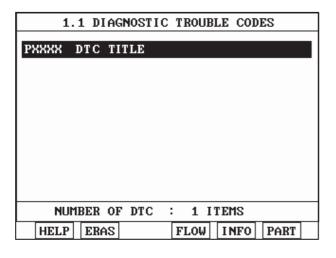

Item	Detecting Condition	Possible cause
DTC Strategy	Monitor the coolant temperature	
Enable Conditions	 Coolant sensor is normal No disabling faults present(DTCs related to MAFS/MAPS, catalyst, fuel system or engine oil temperature sensor) Coolant Temperature at startup < 45 (113 °F) Engine running Coolant temperature > 50 (122 °F) Intake air temperature < 35 (95 °F) 	• ECTS
Thresh old value	Coolant temperature 110 (230 °F)(Average airflow < 30 g/sec and filtered airflow < 50 g/sec)	
Diagnosis Time	Once per driving cycle (about 2 minutes)	
MIL On Condition	NO MIL ON(DTC only)	

FL -323

SPECIFICATION EB75509C

Temp. (/)	Resistance (k)	Temp. (/)	Resistance (k)
-40(-40)	48.14	40(104)	1.15
-20(-4)	14.13 ~ 16.83	60(140)	0.59
0(32)	5.79	80(176)	0.32
20(68)	2.31 ~ 2.59		

SCHEMATIC DIAGRAM EC151AD2



UFBG242A

MONITOR DTC STATUS E1729B8E

- 1. Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu
 - 4) Read "DTC Status" parameter.

FL -324 FUEL SYSTEM

PXXXX DTC TITLE

1.MIL STATUS: ON/OFF

2.DTC STATUS: PRESENT/HISTORY

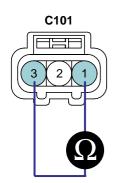
3.DIAG.STATUS: DIAGNOSIS FINISHED!

SGHFL7305L

5) Is "Present" Fault displayed?

Go to "Component Inspection" procedure.

NO


Fault is intermittent, go to "Verification of vehicle Repair" procedure.

COMPONENT INSPECTION E1B7D29F

- 1. IG "OFF" and disconnect ECTS connector.
- 2. Remove it.
- Measure resistance between terminals 1 and 3 of ECTS connector as the temperature rises.

SPECIFICATION:

Temp. (/)	Resistance (k)	Temp. (/)	Resistance (k)
-40(-40)	48.14	40(104)	1.15
-20(-4)	14.13 ~ 16.83	60(140)	0.59
0(32)	5.79	80(176)	0.32
20(68)	2.31 ~ 2.59		

- 1. ECTS Ground
- 2. To Gauge
- 3. ECTS Signal

SBLF26492L

FL -325

4. Are the measured resistance within specification?

Clear DTC and Test-drive under enable conditions above-mentioned.

After the test, If this DTC is set, recheck it thoroughly. If not, it is intermittent fault, go to "Verification of vehicle Repair" procedure.

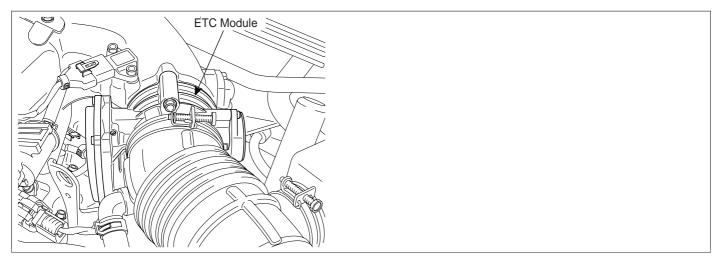
Substitute with a known - good ECTS and check for proper operation. If the problem is corrected, Go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR EAB218CF

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC



Go to the applicable troubleshooting procedure.

FL -326 FUEL SYSTEM

DTC P0222 THROTTLE/PEDAL POSITION SENSOR/SWITCH "B" CIRCUIT LOW INPUT

COMPONENT LOCATION E8DC3589

SGHFL7316N

GENERAL DESCRIPTION ED8AE0AA

The Electronic Throttle Control(ETC) system is made of the components throttle body, Throttle Position Sensor(TPS)1 & 2 and Accelerator Position Sensor(APS) 1 & 2. TPS1 & 2 are sharing the same source voltage and ground. The throttle valve opening is control by throttle motor which is controlled by Engine Control Module(PCM). The opposite position indicator shows inverted signal characteristics. TPS1 output voltage increases smoothly in proportion with the throttle valve opening angle after starting. TPS2 output voltage decreases in inverse proportion with the throttle valve opening angle after starting. TPS provides feedback to the PCM to control the throttle motor in order to control the throttle valve opening angle properly in response to the driving condition.

DTC DESCRIPTION E9FCD80B

Checking output signals from TPS2 every 8.5 sec. under detecting condition, if an output signal is below 0.25V for more than 0.1 sec, PCM sets P0222. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION E2BCC9C1

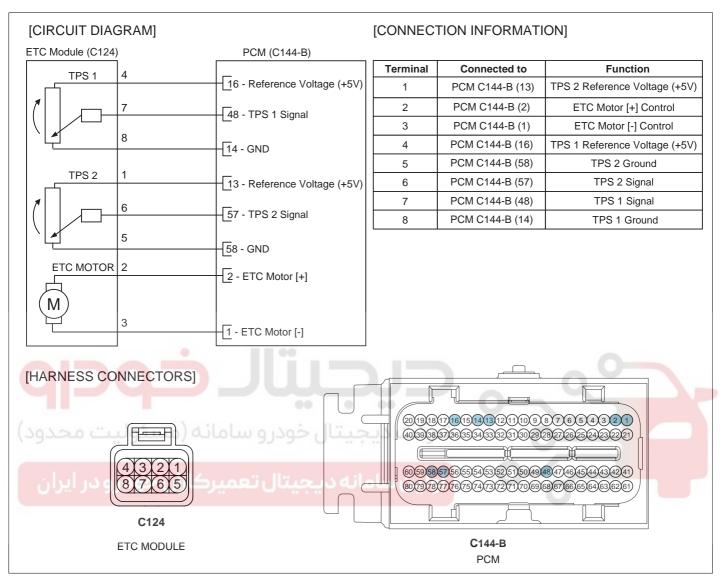
Item	Detecting Condition	Possible Cause
DTC Strategy	• signal low	Poor connection
Enable condition	• IG "ON"	Open or short to ground
threshold value	The signal voltage of TPS	in power harnessOpen or short to ground
diagnosis time	Continuous (more than 0.1 sec. failure for every 8.5 sec.test)	in signal harness • TPS
MIL ON condition	2 driving cycles	• PCM

FL -327

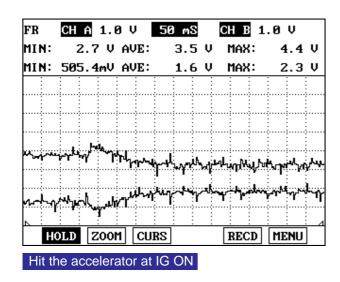
SPECIFICATION

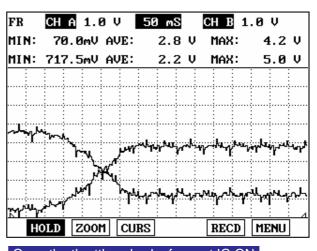
ECA9B590

Throttle eneming (°)	Output voltage(V) [Vref=5.0]	
Throttle opening (°)	TPS1	TPS2
0°	0.0V	5.0V
10°	0.5V	4.5V
20°	0.9V	4.1V
30°	1.4V	3.6V
40°	1.8V	3.2V
50°	2.3V	2.7V
60°	2.7V	2.3V
70°	3.2V	1.8V
80°	3.6V	1.4V
90°	4.1V	0.9V
100°	4.5V	0.5V
110°	5.0V	0.0V



اولین سامانه دیجیتال تعمیرکاران خودرو در ایران


FL -328 FUEL SYSTEM


SCHEMATIC DIAGRAM E23D2E13

UFBG236A

SIGNAL WAVEFORM AND DATA EAE43137

Open the throttle valve by force at IG ON

EGRF604Z

FL -329

MONITOR DTC STATUS E

- 1. Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu.
 - 4) Read "DTC Status" parameter.

Go to "Terminal and connector inspection" procedure.

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

TERMINAL AND CONNECTOR INSPECTION ED6BC757

- 1. Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- 2. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

Repair as necessary and go to "Verification of Vehicle Repair" procedure

NO

FL -330 FUEL SYSTEM

Go to "Power Circuit Inspection" procedure.

POWER CIRCUIT INSPECTION E3F172D7

- 1. IG "OFF" and disconnect TPS connector.
- 2. IG "ON" and ENG "OFF"
- 3. Measure voltage between terminal 1 of TPS harness connector and chassis ground.

Specification: Approx. 5V

4. Is the measured voltage within specification?

Go to "Signal circuit inspection" procedure.

Repair open or short to ground in power harness, and go to "Verification of Vehicle Repair" procedure.

SIGNAL CIRCUIT INSPECTION

- Check short to ground in harness
 - 1) IG "OFF" and disconnect TPS connector and PCM connector.
 - Measure resistance between terminal 6 of TPS harness connector and chassis ground.
 - 3) Measure resistance between terminals 6 and 5(8) of TPS harness connector.

Specification: Infinite

4) Is the measured resistance within specification?

YES

Go to "Check open in harness" as follows

NO

Repair short to ground in harness, and go to "Verification of Vehicle Repair" procedure.

- 2. Check open in harness
 - 1) IG "OFF" and disconnect TPS connector and PCM connector.
 - 2) Measure resistance between terminal 6 of TPS harness connector and terminal 57 of PCM harness connector (C144-B).

Specification: Below 1

3) Is the measured resistance within specification?

YES

FL -331

Go to "Component Inspection" procedure.

Repair open in harness, and go to "Verification of Repair" procedure.

COMPONENT INSPECTION FF757839

- Check TPS
 - 1) IG "OFF" and disconnect TPS connector.
 - Measure resistance between terminals 1 and 5 of TPS connector.(Component side)

Specification: 2.7 ~ 4.1k

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

Substitute with a known - good TPS and check for proper operation. If the problem is corrected, replace TPS and go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. After testing PCM on the vehicle, use this function before reusing the PCM

$/! \setminus CAUTION$

Procedure of ETS Initialization

- 1. Erase the trouble codes on PCM
- Turn the ignition key off and keep this condition until the main relay is turned off.(10 sec.) 2.
- Turn ignition key on more than 1second to record the throttle motor position on the EEPROM

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode

FL -332 FUEL SYSTEM

2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions

- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC

NO

Go to the applicable troubleshooting procedure.

FL -333

DTC P0223 THROTTLE/PEDAL POSITION SENSOR/SWITCH "B" CIRCUIT HIGH INPUT

COMPONENT LOCATION E14B57E2

Refer to DTC P0222.

GENERAL DESCRIPTION E05D3775

Refer to DTC P0222.

DTC DESCRIPTION EEDEE43C

Checking output signals from TPS2 every 8.5 sec. under detecting condition, if an output signal is above 4.75V for more than 0.1 sec., PCM sets P0223. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION EC2F3AC5

Item	Detecting Condition	Possible Cause
DTC Strategy	• Signal High	0
Enable condition	• IG "ON"	Poor connectionShort to battery in signal
threshold value	The signal voltage of TPS 4.75V	harness
diagnosis time	Continuous (more than 0.1 sec. failure for every 8.5 sec.test)	Open in ground harnessTPSPCM
MIL ON condition	2 driving cycles	

SPECIFICATION E9583B29

Throttle opening ($^{\circ}$)	Output voltage(V) [Vref=5.0]	
	TPS1	TPS2
0°	0.0V	5.0V
10°	0.5V	4.5V
20°	0.9V	4.1V
30°	1.4V	3.6V
40°	1.8V	3.2V
50°	2.3V	2.7V
60°	2.7V	2.3V
70°	3.2V	1.8V
80°	3.6V	1.4V
90°	4.1V	0.9V
100°	4.5V	0.5V
110°	5.0V	0.0V

FL -334 FUEL SYSTEM

SCHEMATIC DIAGRAM E4537CE0

Refer to DTC P0222.

SIGNAL WAVEFORM AND DATA E4403F88

Refer to DTC P0222.

MONITOR DTC STATUS E0C9980F

Refer to DTC P0222.

TERMINAL AND CONNECTOR INSPECTION E56D20A

Refer to DTC P0222.

SIGNAL CIRCUIT INSPECTION E198334F

- Check voltage
 - IG "OFF" and disconnect TPS connector.
 - 2) IG "ON and ENG "OFF"
 - 3) Measure voltage between terminal 6 of TPS harness connector and chassis ground.

Specification: Approx. 0V

4) Is the measured voltage within specification?

YES

Go to "Ground Circuit Inspection" procedure.

NO

Go to "Check short to battery in harness" as follows.

- 2. Check short to battery in harness
 - 1) IG "OFF" and disconnect TPS connector and PCM connector.
 - 2) Measure resistance between terminals 1 and 6 of TPS harness connector.
 - Measure resistance between terminals 4 and 6 of TPS harness connector.
 - Measure resistance between terminals 2 and 6 of TPS harness connector.
 - Measure resistance between terminals 3 and 6 of TPS harness connector.

Specification: Infinite

6) Is the measured resistance within specification?

YES

FL -335

Go to " Ground Circuit Inspection" procedure.

Repair short to battery in harness, and go to "Verification of Vehicle Repair" procedure.

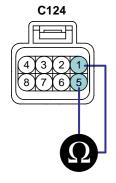
GROUND CIRCUIT INSPECTION EA02E485

- 1. IG "OFF" and disconnect TPS connector.
- 2. IG "ON" and ENG "OFF"
- 3. Measure voltage between terminal 1 of TPS harness connector and chassis ground.
- 4. Measure voltage between terminals 1 and 5 of TPS harness connector.

Specification: Measurement "A" - Measurement 'B' = Approx. below 200mV

5. Is the measured voltage within specification?

Go to "Component Inspection" procedure.


NO

Repair open or contact resistance inharness, and go to "Verification of Vehicle Repair: procedure.

COMPONENT INSPECTION EABBDBAA

- 1. Check TPS
 - 1) IG "OFF" and disconnect TPS connector.
 - 2) Measure resistance between terminals 1 and 5 of TPS connector.(Component side)

Specification: 2.7 ~ 4.1k

- 1. TPS 2 Reference Voltage (+5V)
- 2. ETC Motor [+] Control
- 3. ETC Motor [-] Control
- 4. TPS 1 Reference Voltage (+5V)
- 5. TPS 2 Ground
- 6. TPS 2 Signal
- 7. TPS 1 Signal
- 8. TPS 1 Ground

SBLF26496L

3) Is the measured resistance within specification?

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

FL -336 FUEL SYSTEM

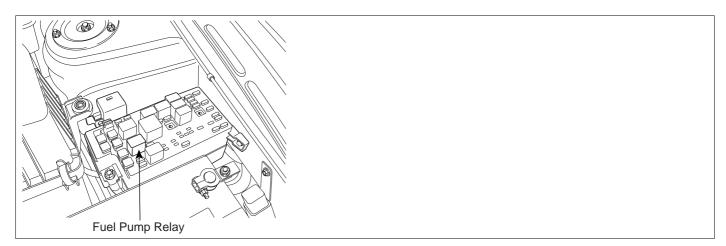
Substitute with a known - good TPS and check for proper operation. If the problem is corrected, replace TPS and go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. After testing PCM on the vehicle, use this function before reusing the PCM

Procedure of ETS Initialization

- 1. Erase the trouble codes on PCM
- 2. Turn the ignition key off and keep this condition until the main relay is turned off.(10 sec.)
- 3. Turn ignition key on more than 1 second to record the throttle motor position on the EEPROM

VERIFICATION OF VEHICLE REPAIR E160339E


Refer to DTC P0222.

FL -337

DTC P0230 FUEL PUMP PRIMARY CIRCUIT

COMPONENT LOCATION E23ED5B8

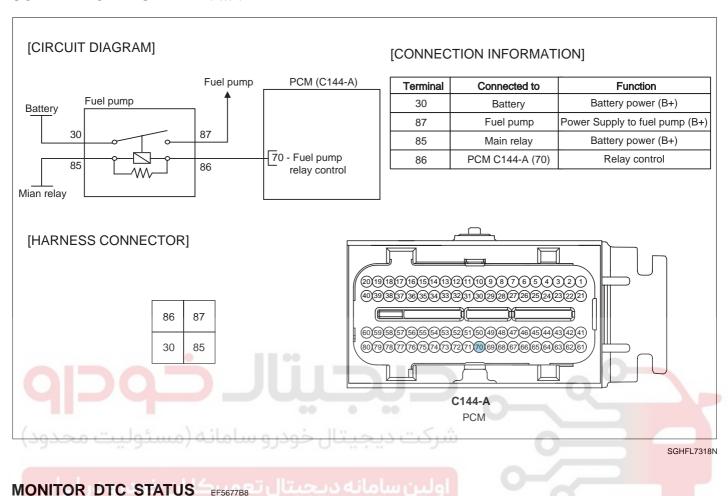
SGHFL7317N

GENERAL DESCRIPTION E4EEF708

The PCM provides ground to one side of the coil in the fuel pump relay to control the fuel pump relay. The other side of the fuel pump relay coil is connected to main relay, which activates when the ignition switch is ON. The PCM monitors the control circuit between the fuel pump relay and the PCM. When the ignition switch is turned ON, the PCM energizes the fuel pump relay, which sends power to the fuel pump.

DTC DESCRIPTION EDECABE5

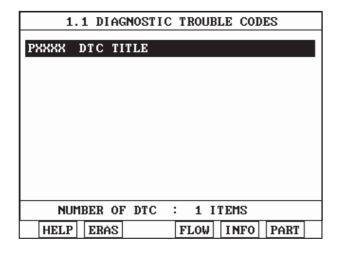
Checking fuel pump relay circuit continuously under detecting condition, if open or short in the circuit is detected, PCM sets P0230.In addition, Take note that open circuit in Main Relay may cause this P0230 code.


In addition, Take note that open circuit in Main Relay may cause this P0230 code.

DTC DETECTING CONDITION EAF8D7DE

Item	Detecting Condition	Possible Cause
DTC Strategy	Signal Low or High	Poor connection
Enable condition	• 11V Battery Voltage 16V	Open or short in fuel pump
threshold value	Open or short	relay circuit Open in Main Relay circuit
diagnosis time	Continuous	Fuel Pump Relay
MIL ON condition	NO MIL ON(DTC only)	• PCM

FL -338 FUEL SYSTEM


SCHEMATIC DIAGRAM E8A356D

Check DTC Status

- 1) Connect scantool to Data Link Connector(DLC).
- 2) IG "ON".
- 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu.
- 4) Read "DTC Status" parameter.

FL -339

PXXXX DTC TITLE

1.MIL STATUS: ON/OFF
2.DTC STATUS: PRESENT/HISTORY
3.DIAG.STATUS: DIAGNOSIS FINISHED!

SGHFL7305L

5) Is "Present" Fault displayed?

YES

Go to "Terminal and connector inspection" procedure.

NO

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

TERMINAL AND CONNECTOR INSPECTION E0F21058

- 1. Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- 2. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

Repair or replace if necessary and go to "Verification of Vehicle Repair" procedure

NO

Go to "Power Circuit Inspection" procedure.

POWER CIRCUIT INSPECTION E89668B0

- 1. IG "OFF" & ENG "OFF"
- 2. Disconnect fuel pump relay.
- 3. IG "ON" & ENG "OFF"
- 4. Measure voltage between harness terminal 30(85) of chassis ground.

FL -340 FUEL SYSTEM

Specification: B+

5. Is the measured voltage within specification?

Go to "Control Circuit Inspection" procedure.

NO

Check "Fuse" between fuel pump relay and main relay is not installed or blown off Check "Fuse" between fuel pump relay and battery is not installed or blown off Especially, if battery voltage at terminal 85 is not detected, replace the Main Relay. Repair or replace as necessary and then, go to "Verification of Vehicle Repair" procedure.

CONTROL CIRCUIT INSPECTION E2271FF1

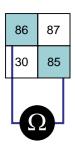
- 1. IG "OFF"
- 2. Disconnect fuel pump relay.
- 3. IG "ON" & ENG "OFF"
- 4. Measure voltage between harness terminal 86 and chassis ground

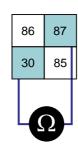
Specification: Approx. 2.5V ~ 3V

5. Is the measured voltage within specification?

Go to "Component Inspection" procedure.

Repair or repalce as necessary and then, go to "Verification of Vehicle Repair" procedure.


COMPONENT INSPECTION ED6D7F2F


- 1. Check fuel pump relay
 - 1) IG "OFF"
 - 2) Disconnect Fuel Pump Relay
 - 3) Measure resistance between terminal 30 and 87 of Fuel Pump Relay
 - 4) Measure resistance between terminal 85 and 86 of Fuel Pump Relay

SPECIFICATION:

Terminal	continuity
30 ~ 87	NO
85 ~ 86	YES (Approx. 70 ~ 120)

FL -341

- 30. Battery Power(B+)
- 85. Battery Power(B+) from main relay
- 86. Relay Control
- 87. Power supply to fuel pump

SGHFL7214N

5) Is the measured resistance within specification?

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. After testing PCM on the vehicle, use this function before reusing the PCM

NO

Substitute with a known - good Fuel Pump Relay and check for proper operation. If the problem is corrected, replace Fuel Pump Relay and go to "Verification of Vehicle Repair" procedure.

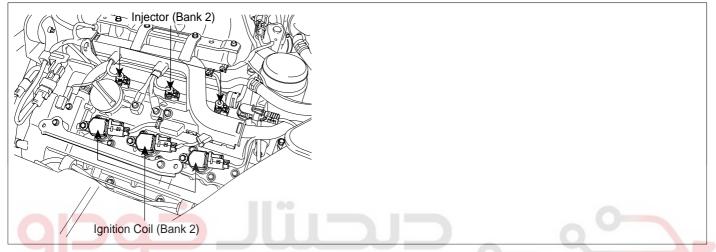
VERIFICATION OF VEHICLE REPAIR

E8696309

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC


NO

Go to the applicable troubleshooting procedure.

FL -342 FUEL SYSTEM

DTC P0261 CYLINDER 1-INJECTOR CIR	CUIT LOW
DTC P0264 CYLINDER 2-INJECTOR CIR	CUIT LOW
DTC P0267 CYLINDER 3-INJECTOR CIR	CUIT LOW
DTC P0270 CYLINDER 4-INJECTOR CIR	CUIT LOW
DTC P0273 CYLINDER 5-INJECTOR CIR	CUIT LOW
DTC P0276 CYLINDER 6-INJECTOR CIR	CUIT LOW

COMPONENT LOCATION E9CD04B3

SGHFL7319N

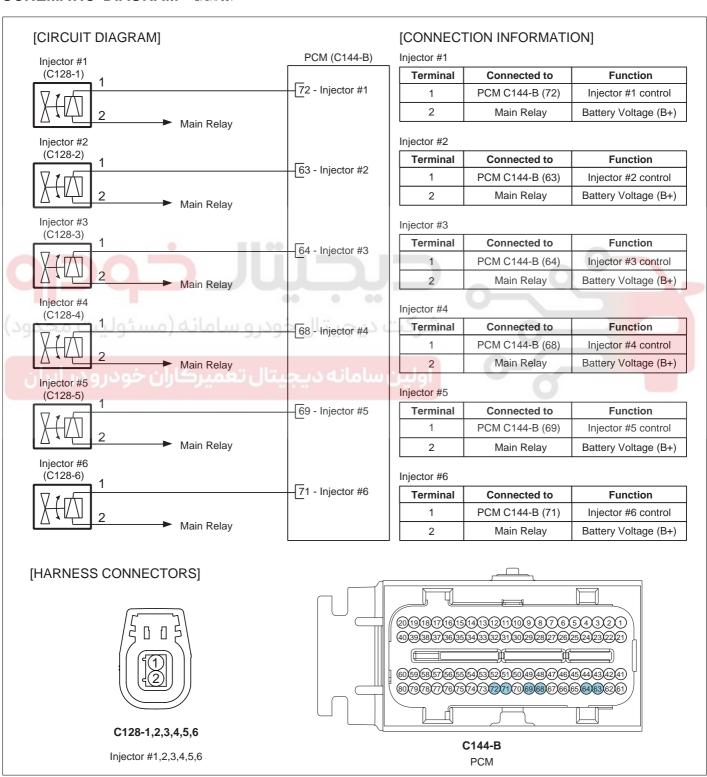
GENERAL DESCRIPTION E3C76

Based on information from various sensors, the PCM calculates the fuel injection amount. The fuel injector is a solenoid-operated valve and the fuel injection amount is controlled by length of time the fuel injector is held open. The PCM controls each injector by grounding the control circuit. When the PCM energizes the injector by grounding the control circuit, the circuit voltage should be low (theoretically 0V) and the fuel is injected. When the PCM de-energizes the injector by opening the control circuit, the fuel injector is closed and circuit voltage should momentarily peak.

DTC DESCRIPTION E158E7A6

Checking output signals from injectors under detecting condition, if an output signal is low, PCM sets P0261/P0264/P0267/P0270/P0273/P0276. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

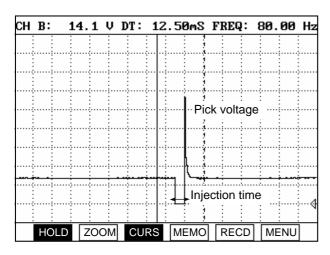
DTC DETECTING CONDITION E60175BF


Item	Detecting Condition	Possible Cause
DTC Strategy	Signal Low	
Enable condition	 Engine running 11V Battery voltage 16V No disabling faults present Above conditions are met > 0.5sec. 	 Poor connection Open or short to ground in power harness Open or short to ground
threshold value	Open or short to ground	in control harness Injector
diagnosis time	Continuous	• PCM
MIL ON condition	2 driving cycles	

FL -343

SPECIFICATION ECA33543

Item	Coil resistance()
Injector	11.4 ~ 12.6 (at 20 / 68)

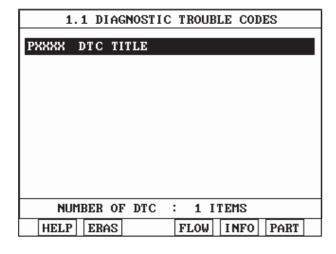

SCHEMATIC DIAGRAM EFDAF961

UFBG254A

FL -344 **FUEL SYSTEM**

SIGNAL WAVEFROM AND DATA

EGRF607S


When the PCM energizes the injector by grounding control circuit, the circuit voltage should be low (theoretically 0V) and the fuel is injected. When the PCM de-energizes the injector by opening control circuit, the fuel injector is closed and circuit voltage should momentarily peak.

MONITOR DTC STATUS

- Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC). شرکت دیجیتال خودرو سامانه (مسئولی_{:"ON"}

E9A0A952

- 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu.
- Read "DTC Status" parameter.

PXXXX DTC TITLE

2.DTC STATUS: PRESENT/HISTORY

3.DIAG.STATUS: DIAGNOSIS FINISHED!

SGHFL7305L

Is "Present" Fault displayed?

YES

Go to "Terminal and connector inspection" procedure.

NO

FL -345

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

TERMINAL AND CONNECTOR INSPECTION

- Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or 2 damage.
- Has a problem been found?

Repair as necessary and go to "Verification of Vehicle Repair" procedure

Go to "Power Circuit Inspection" procedure.

POWER CIRCUIT INSPECTION EOEC618D

- IG "ON" and disconnect injector connector.
- IG "ON" and ENG "OFF" 2
- Measure voltage between terminal 2 of injector harness connector and chassis ground. 3.

Specification: B+

Is the measured voltage within specification?

Go to "Control Circuit Inspection" procedure.

NO

Check open or connection of the fuse connected to injector power supply. Repair open or short to ground in harness, and go to "Verification of Vehicle Repair' procedure.

CONTROL CIRCUIT INSPECTION

- Check short to ground in harness
 - 1) IG "OFF" and disconnect injector connector and PCM connector.
 - Measure resistance between terminal 1 of injector harness connector and chassis ground.

Specification: Infinite

Is the measured resistance within specification?

FL -346 FUEL SYSTEM

YES

Go to "Check open in harness" as follows.

NO

Repair short to ground in harness, and go to "Verification of Vehicle Repair" procedure.

- 2. Check open in harness
 - 1) IG "OFF" and disconnect injector connector and PCM connector.
 - P0261) Measure resistance between terminal 1 of injector harness connector and 72 of PCM harness connector tor(C144-B).

P0264) Measure resistance between terminal 1 of injector harness connector and 63 of PCM harness connector(C144-B).

P0267) Measure resistance between terminal 1 of injector harness connector and 64 of PCM harness connector(C144-B).

P0270) Measure resistance between terminal 1 of injector harness connector and 68 of PCM harness connector(C144-B).

P0273) Measure resistance between terminal 1 of injector harness connector and 69 of PCM harness connector(C144-B).

P0276) Measure resistance between terminal 1 of injector harness connector and 71 of PCM harness connector(C144-B).

Specification: Below 1

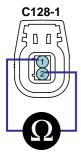
3) Is the measured resistance within specification?

YES

Go to "Component Inspection" procedure.

NO

Repair open in harness, and go to "Verification of Vehicle Repair" procedure.


COMPONENT INSPECTION E686BDC7

- 1. Check injector
 - 1) IG "OFF" and disconnect injector connector.
 - 2) Measure resistance between terminals 1 and 2 of injector connector.(Component side)

SPECIFICATION:

Item	Coil resistance()
Injector	11.4 ~ 12.6 (at 20 / 68)

FL -347

- 1. Injector #1 control
- 2. Battery voltage

SBLF26506L

3) Is the measured resistance within specification?

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

Substitute with a known - good injector and check for proper operation. If the problem is corrected, replace injector and go to "Verification of Vehicle Repair" procedure.

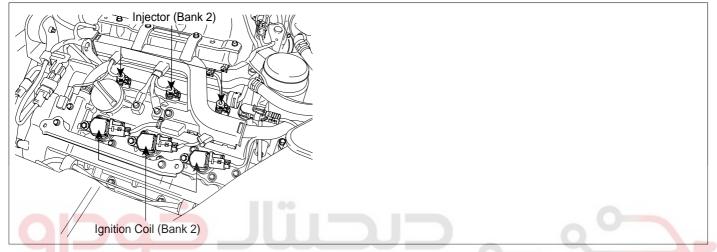
There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. After testing PCM on the vehicle, use this function before reusing the PCM

VERIFICATION OF VEHICLE REPAIR E30FCC52

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC



Go to the applicable troubleshooting procedure.

FL -348 FUEL SYSTEM

DTC P0262	CYLINDER 1-INJECTOR CIRCUIT HIGH	
DTC P0265	CYLINDER 2-INJECTOR CIRCUIT HIGH	
DTC P0268	CYLINDER 3-INJECTOR CIRCUIT HIGH	
DTC P0271	CYLINDER 4-INJECTOR CIRCUIT HIGH	
DTC P0274	CYLINDER 5-INJECTOR CIRCUIT HIGH	
DTC P0277	CYLINDER 6-INJECTOR CIRCUIT HIGH	

COMPONENT LOCATION E7D4D5BF

SGHFL7319N

GENERAL DESCRIPTION EBFEDT

Based on information from various sensors, the PCM calculates the fuel injection amount. The fuel injector is a solenoid-operated valve and the fuel injection amount is controlled by length of time the fuel injector is held open. The PCM controls each injector by grounding the control circuit. When the PCM energizes the injector by grounding the control circuit, the circuit voltage should be low (theoretically 0V) and the fuel is injected. When the PCM de-energizes the injector by opening the control circuit, the fuel injector is closed and circuit voltage should momentarily peak.

DTC DESCRIPTION E6AAFB81

Checking output signals from injectors under detecting condition, if an output signal is high, PCM sets P0262/P0265/P0268/P0271/P0274/P0277. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle

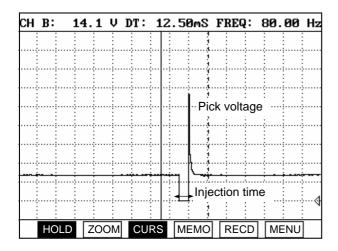
DTC DETECTING CONDITION EB2A79B0


Item	Detecting Condition	Possible Cause
DTC Strategy	Signal High	
Enable condition	 Engine running 11V Battery voltage 16V No disabling faults present Above conditions are met 0.5sec. 	Poor connectionShort to battery in harnessInjector
threshold value	Short to battery	• PCM
diagnosis time	Continuous	
MIL ON condition	2 driving cycles	

FL -349

SPECIFICATION E392B80F

Item	Coil resistance()
Injector	11.4 ~ 12.6 (at 20 / 68)


SCHEMATIC DIAGRAM EDCB618C

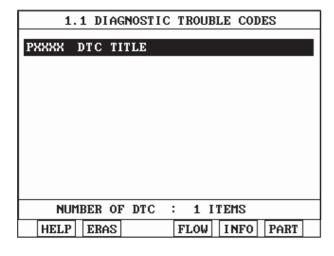
UFBG254A

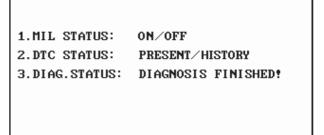
FL -350 FUEL SYSTEM

SIGNAL WAVEFROM AND DATA E2

EGRF607S

When the PCM energizes the injector by grounding control circuit, the circuit voltage should be low (theoretically 0V) and the fuel is injected. When the PCM de-energizes the injector by opening control circuit, the fuel injector is closed and circuit voltage should momentarily peak.


MONITOR DTC STATUS


EE9D96F8

- Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).
 - شرکت دیجیتال خودرو سامانه (مسئولی:"G "ON".
 - 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu.

PXXXX DTC TITLE

4) Read "DTC Status" parameter.

SGHFL7305L

5) Is "Present" Fault displayed?

YES

Go to "Terminal and connector inspection" procedure.

NO

FL -351

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

TERMINAL AND CONNECTOR INSPECTION EE69A72

- 1. Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- 2. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

Repair as necessary and go to "Verification of Vehicle Repair" procedure

Go to "Control Circuit Inspection" procedure.

CONTROL CIRCUIT INSPECTION

ED84579B

- 1. Check voltage
 - 1) IG "OFF" and disconnect injector connector.
 - IG "ON" and ENG "OFF"
 - 3) Measure voltage between terminal 1 of injector harness connector and chassis ground.

Specification: Approx. 0V

4) Is the measured voltage within specification?

Go to "Component Inspection" procedure.

NO

Go to "Check short to battery in harness" as follows.

- 2. Check short to battery in harness
 - 1) IG "OFF" and disconnect injector connector and PCM connector.
 - 2) Measure resistance between terminals 1 and 2 of injector harness connector.

Specification: Below 1

3) Is the measured resistance within specification?

YES

FL -352 FUEL SYSTEM

Go to "Component Inspection" procedure.

Repair short to battery in harness, and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION E00DB280

- Check injector
 - 1) IG "OFF" and disconnect injector connector.
 - Measure resistance between terminals 1 and 2 of injector connector. (Component side)

SPECIFICATION:

Item	Coil resistance()
Injector	11.4 ~ 12.6 (at 20 / 68)

YES

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

NO

Substitute with a known - good injector and check for proper operation. If the problem is corrected, replace injector and go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. After testing PCM on the vehicle, use this function before reusing the PCM

VERIFICATION OF VEHICLE REPAIR E6C84350

After a repair, it is essential to verify that the fault has been corrected.

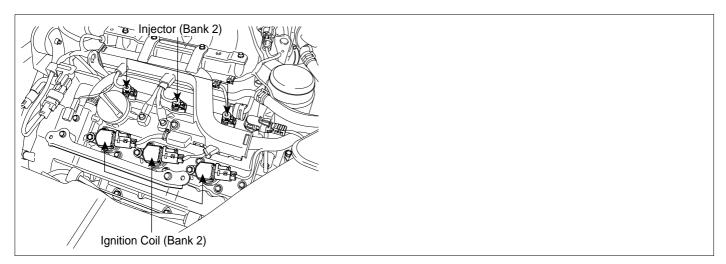
- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter

FL -353

4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC

Go to the applicable troubleshooting procedure.



FL -354 FUEL SYSTEM

DTC P0300 RANDOM/MULTIPLE CYLINDER MISFIRE DETECTED

COMPONENT LOCATION E3F08A4

SGHFL7319N

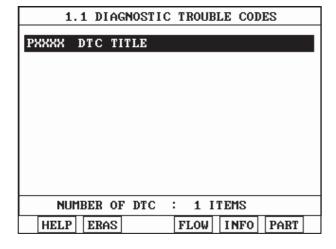
GENERAL DESCRIPTION E8A1471D

Misfires can be caused by lack of combustion in a cylinder due to absence of spark, poor fuel metering, poor compression, or many other causes. Even a small number of misfires may result in excessive exhaust emissions due to the unburned mixture. Increased misfire rates cause damage to the catalytic converter. The PCM monitors the crankshaft speed variation to determine if any misfiring generated. The PCM identifies the specific cylinder in which the misfire has occurred and counts individual misfire events by monitoring changes in the crankshaft rotation for each cylinder. A random misfire indicates two or more cylinders are misfiring.

DTC DESCRIPTION E74785CE

The PCM measures reference event times and calculates the positive and negative acceleration of the crank wheel to detrmine whether a misfire has occurred. When the rate of misfire exceeds a threshold where the catalyst reaches a temperature where permanent damage can ocur, to the point that tail pipe emissions reach 1.5 times the tailpipe standard or where a cylinder misfire cause a loss of torque produced from that cylinder. PCM sets this DTC. In case that misfire affects Catalyst damage, MIL(Malfunction Indicator Lamp) will be illuminating and blinking at 1HZ frequency. However, In case of Indivisual and Emission damaging misfire, MIL will be turned on when the malfunction is detected. Especially, if injector connector / Ignition coil is disconnected for more than 46 sec.. PCM sets DTC relating to misfire and

FL -355


DTC DETECTING CONDITION E30D2B4A

lte	em	Detecting Condition	Possible Cause
DTC strategy		Determine ir a muliple cylinder misfire or a cylinder specific misfire is occurring by monitoring crnckshaft acceleration	 Faulty Spark plugs Faulty Spark plug cables Air Leakage Belt deflection and Air gap of CKPS
Enable condition		No disabling faults present / No disabiling Active Faults • P0340 / P0341 / P0118 / P0117 / P0115 / P0336 / P0335 / P1295 P0103 / P0102 / 0108 / P0107 / P0106 / P0501 • Engine speed between 550 and 5800 RPM • System voltage between 9 and 18 volts • The ECT indicates an engine temperature between -6 (20) and 120 (248)	
	Case 1	Individual cylinder misfire detection	Incorrect timingFaulty injector
Thresh- old Value	Case 2	 Emissions damaging - 18 times in 600 ignitions (In case that the misfire affects more than 1.5 times than FTP emissins) 	Improper fuel pressure Improper engine compression Faulty PCM
	Case 3	Catalyst damaging - 95 times in 600 ignitions at idle (It is going to be changeable according to the load or the temperature which is not in the range where it does not melt catalyst)	
Diagnosis time		Continuous	
MIL ON condition		2 driving cycles	
محدود)	ىئولىت	شرکت دیجیتال خودرو سامانه (مس	

MONITOR DTC STATUS EF784615

Check DTC Status

- 1) Connect scantool to Data Link Connector(DLC).
- 2) IG "ON".
- 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu.
- 4) Read "DTC Status" parameter.

PXXXX DTC TITLE

1.MIL STATUS: ON/OFF

2.DTC STATUS: PRESENT/HISTORY

3.DIAG.STATUS: DIAGNOSIS FINISHED!

SGHFL7305L

FL -356 FUEL SYSTEM

5) Is "Present" Fault displayed?

Go to "System Inspection" procedure.

Although the misfire does not occur when the vehicle is brought to workshop, misfire can be reproduced when the condition is met. Drive the vehicle according to the freeze frame data in order to satisfy the condition.

SYSTEM INSPECTION EB91C579

- 1. Check Spark Pulg
 - Remove cylinder's spark plugs
 - 2) Visually/physically inspect the following items:
 - Damaged insulation, Worn electrodes, Oil or fuel fouled, Loose terminals and cracks
 - Check for plug gap: 1.0 1.1 mm (0.039 0.043 in.)
 - Check if the spark plug for the relevant cylinder is lighter in color than the other plugs.
 - 3) Has a problem been found in any of the above areas?

YES

Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure

NO

Go to "Check Air Leakage " as indicated below

- 2. Check Air Leakage
 - 1) Visually/physically inspect the intake/exhaust system as following items,
 - Vacuum hoses for splits, kinks and improper connections.
 - Throttle body gasket
 - Gasket between intake manifold and cylinder head
 - Seals between intake manifold and fuel injectors
 - Exhaust system between HO2S and Three way catalyst for air leakage
 - 2) Has a problem been found in any of the above areas?

YES

Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure

NO

Go to "Check for air leakage in Positive Crankcase Ventilation Valve(PCV)

- 3. Check for air leakage in Positive Crankcase Ventilation Valve(PCV)
 - 1) Remove PCV valve from cylinder head cover by puling ventilation hose
 - 2) With engine idling block PCV valve opening
 - 3) Verify that vacuum is felt

FL -357

- 4) Remove PCV valve
- 5) Blow through valve from prot "A" and verify that air comes out of prot "B"
- 6) Blow through valve from prot "B" and verifty that no air comes out of port "A"
- 7) Has a problem been found?

YES

Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure

NO

Go to "Check Compression pressure" as indicated below

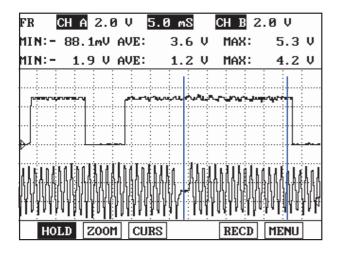
- 4. Check Compression pressure
 - 1) Warm up the engine to normal operating temperature
 - 2) Disconnect the spark plug cables and remove the spark plugs.
 - 3) Crank the engine to remove any foreign material in the cylinders.
 - 4) Put compression pressure gauge into spark pulg hole
 - 5) Crank the engine at wide open throttle and check compression pressure at each cylinder
 - 6) Is compression pressure for each cylinder displayed within specifications?

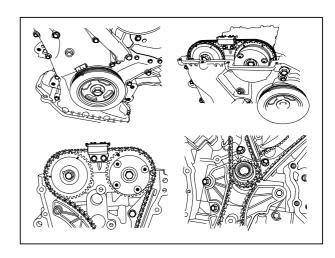
Specification: 1323kPa(13.5 kg/cm²,192 psi)

اولین سامانه دیجیتال تعمیرکاران خودر _{YES} یر

Go to "Check Timing " as indicated below

NO


Add a small amount of oil through the spark plug hole, and repeat above steps. If the addition of oil causes the compression to rise, the cause is a worn or damaged piston ring or cylinder inner surface.


If the compression remains the same, the cause is a burnt or defective valve seat, or pressure is leaking from the gasket. Repair as necessary and go to "Verification of Vehicle Repair" procedure

- Check Timing
 - 1) Ignition "OFF"
 - 2) Check for correct alignment of CMP and CKP signals.

Reference: The 17th of CKP signal from missing tooth is aligned with high of CMP signal

FL -358 FUEL SYSTEM

SEPEL 6417N

3) Are all timing marks alligned correctly?

YES

Go to "Check Fuel Pressure" as indicated below

NO

Check that Cam, Crank and Oil pump sprocket timing marks are correctly aligned. Repair or readjust as necessary and go to "Verification of Vehicle Repair" procedure

6. Check Fuel Pressure

NOTE

- Be cautious that Fuel is explosive and an empty fuel tank can still contain explosive gases. When working on fuel system make sure to supply adequate ventilation to the work area. Do not smoke, and keep sparks and open flames away.
- 2. The fuel system remains under pressure when the engine is not running. Release fuel system pressure before disconnecting any fuel line to reduce the chance of presonal injury or fire damage to vehicle components.
- 1) IG "OFF" and disconnect Fuel Pump Relay in Junction Box.
- 2) Start the engine and wait until the engine stalls.
- 3) IG "OFF" and connect Fuel Pump Relay.
- 4) Install the fuel pressure gauge to the delivery pipe with the fuel pressure gauge adaptor.
- 5) Activate the fuel pump, and with fuel pressure applied, check that there is no fuel leakage from the pressure gauge or connection part.
- Measure the fuel pressure at idle.

Specification: 374.6 ~ 384.4 kPa(3.82 ~ 3.92 kg/cm², 54.3 ~ 55.8 psi)

7) Is the measured fuel pressure within specifications?

YES

FL -359

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

Repair or replace according to the below table. And then, go to "Verification of Vehicle Repair" procedure.

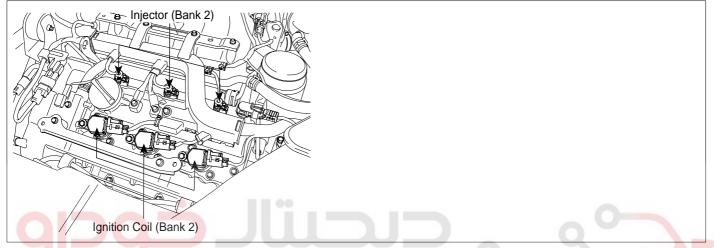
Condition	Possible Cause
Fuel Pressure is too low	Fuel filter,fuel pressure regulator, in-tank fuel hose or the fuel pump
Fuel Pressure is too high	Fuel pressure regulator, hose or pipe

VERIFICATION OF VEHICLE REPAIR E67AD213

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC


Go to the applicable troubleshooting procedure.

FL -360 FUEL SYSTEM

DTC P0301 CYLINDER 1-MISFIRE DETECTED
DTC P0302 CYLINDER 2-MISFIRE DETECTED
DTC P0303 CYLINDER 3-MISFIRE DETECTED
DTC P0304 CYLINDER 4-MISFIRE DETECTED
DTC P0305 CYLINDER 5-MISFIRE DETECTED
DTC P0306 CYLINDER 6-MISFIRE DETECTED
DTC P0306 CYLINDER 6-MISFIRE DETECTED

COMPONENT LOCATION EE69261D

SGHFL7319N

GENERAL DESCRIPTION

BC9CB99

Misfires can be caused by lack of combustion in a cylinder due to absence of spark, poor fuel metering, poor compression, or many other causes. Even a small number of misfires may result in excessive exhaust emissions due to the unburned mixture. Increased misfire rates cause damage to the catalytic converter. The PCM monitors the crankshaft speed variation to determine if any misfiring generated. The PCM identifies the specific cylinder in which the misfire has occurred and counts individual misfire events by monitoring changes in the crankshaft rotation for each cylinder. A random misfire indicates two or more cylinders are misfiring.

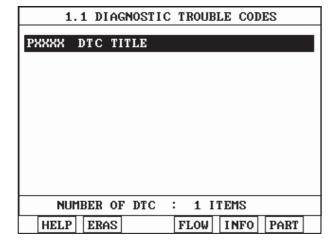
DTC DESCRIPTION ED69233B

The PCM measures reference event times and calculates the positive and negative acceleration of the crank wheel to detrmine whether a misfire has occurred. When the rate of misfire exceeds a threshold where the catalyst reaches a temperature where permanent damage can ocur, to the point that tail pipe emissions reach 1.5 times the tailpipe standard or where a cylinder misfire cause a loss of torque produced from that cylinder. PCM sets this DTC. In case that misfire affects Catalyst damage, MIL(Malfunction Indicator Lamp) will be illuminating and blinking at 1HZ frequency. However, In case of Indivisual and Emission damaging misfire, MIL will be turned on when the malfunction is detected.

Especially, if injector connector / Ignition coil is disconnected for more than 46 sec., PCM sets DTC relating to misfire and conducts the fuel-cut to protect the catalyst.

FL -361

DTC DETECTING CONDITION EA559DBF


Item		Detecting Condition	Possible Cause	
DTC strategy		Determine ir a muliple cylinder misfire or a cylinder specific misfire is occurring by monitoring crnckshaft acceleration		
Enable condition		No disabling faults present / No disabiling Active Faults • P0340 / P0341 / P0118 / P0117 / P0115 / P0336 / P0335 / P1295 P0103 / P0102 / 0108 / P0107 / P0106 / P0501 • Engine speed between 550 and 5800 RPM • System voltage between 9 and 18 volts • The ECT indicates an engine temperature between -6 (20) and 120 (248)	 Faulty Spark plugs Faulty Spark plug cables Air Leakage Belt deflection and Air gap of CKPS 	
	Case 1	Individual cylinder misfire detection	Incorrect timingFaulty injector	
Case 2		Emissions damaging - 18 times in 600 ignitions (In case that the misfire affects more than 1.5 times than FTP emissins)	Improper fuel pressureImproper engine compression	
old Value	Case 3	Catalyst damaging - 95 times in 600 ignitions at idle (It is going to be changeable according to the load or the temperature which is not in the range where it does not melt catalyst)	Faulty PCM	
Diagnosis time		Continuous		
MIL ON condition		2 driving cycles		
شرکت دیجیتال خودرو سامانه (مسئولیت محدود)				

MONITOR DTC STATUS E2AF2B9C

ولین سامانه دیجیتال تعمیرکاران خودرو در ایران

Check DTC Status

- 1) Connect scantool to Data Link Connector(DLC).
- 2) IG "ON".
- 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu.
- 4) Read "DTC Status" parameter.

PXXXX DTC TITLE

1.MIL STATUS: ON/OFF

2.DTC STATUS: PRESENT/HISTORY

3.DIAG.STATUS: DIAGNOSIS FINISHED!

SGHFL7305L

FL -362 FUEL SYSTEM

5) Is "Present" Fault displayed?

Go to "System Inspection" procedure.

Although the misfire does not occur when the vehicle is brought to workshop, misfire can be reproduced when the condition is met. Drive the vehicle according to the freeze frame data in order to satisfy the condition.

SYSTEM INSPECTION EE573C24

- 1. Check Spark Pulg
 - Remove cylinder's spark plugs
 - 2) Visually/physically inspect the following items:
 - Damaged insulation, Worn electrodes, Oil or fuel fouled, Loose terminals and cracks
 - Check for plug gap: 1.0 1.1 mm (0.039 0.043 in.)
 - Check if the spark plug for the relevant cylinder is lighter in color than the other plugs.
 - 3) Has a problem been found in any of the above areas?

YES

Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure

NO

Go to "Check Air Leakage " as indicated below

- 2. Check Air Leakage
 - 1) Visually/physically inspect the intake/exhaust system as following items,
 - Vacuum hoses for splits, kinks and improper connections.
 - Throttle body gasket
 - Gasket between intake manifold and cylinder head
 - Seals between intake manifold and fuel injectors
 - Exhaust system between HO2S and Three way catalyst for air leakage
 - 2) Has a problem been found in any of the above areas?

YES

Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure

NO

Go to "Check for air leakage in Positive Crankcase Ventilation Valve(PCV)

- 3. Check for air leakage in Positive Crankcase Ventilation Valve(PCV)
 - 1) Remove PCV valve from cylinder head cover by puling ventilation hose
 - 2) With engine idling block PCV valve opening
 - 3) Verify that vacuum is felt

FL -363

- 4) Remove PCV valve
- 5) Blow through valve from prot "A" and verify that air comes out of prot "B"
- 6) Blow through valve from prot "B" and verifty that no air comes out of port "A"
- 7) Has a problem been found?

YES

Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure

NO

Go to "Check Compression pressure" as indicated below

- 4. Check Compression pressure
 - 1) Warm up the engine to normal operating temperature
 - 2) Disconnect the spark plug cables and remove the spark plugs.
 - Crank the engine to remove any foreign material in the cylinders.
 - 4) Put compression pressure gauge into spark pulg hole
 - 5) Crank the engine with widely opend throttle valve and check compression pressure at each cylinder

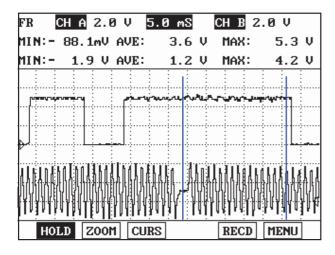
Specification: 1323kPa(13.5 kg/cm²,192 psi)

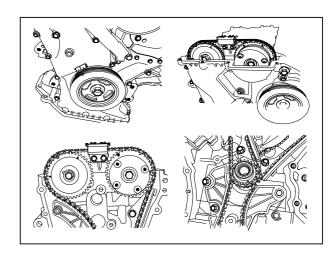
6) Is compression pressure for each cylinder displayed within specifications?

YES

Go to "Check Timing " as indicated below

NO


Add a small amount of oil through the spark plug hole, and repeat above steps. If the addition of oil causes the compression to rise, the cause is a worn or damaged piston ring or cylinder inner surface.


If the compression remains the same, the cause is a burnt or defective valve seat, or pressure is leaking from the gasket. Repair as necessary and go to "Verification of Vehicle Repair" procedure

- Check Timing
 - 1) Ignition "OFF"
 - 2) Monitor these signal waveforms from CAM and Crank shaft position Sensor are correctly aligned.

Reference: The 17th of CKP signal from missing tooth is aligned with high of CMP signal

FL -364 FUEL SYSTEM

SEPEL 6417N

3) Are all timing marks alligned correctly?

YES

Go to "Check Fuel Pressure" as indicated below

NO

Check that Cam, Crank and Oil pump sprocket timing marks are correctly aligned. Repair or readjust as necessary and go to "Verification of Vehicle Repair" procedure

6. Check Fuel Pressure

NOTE

- Be cautious that Fuel is explosive and an empty fuel tank can still contain explosive gases. When working on fuel system make sure to supply adequate ventilation to the work area. Do not smoke, and keep sparks and open flames away.
- 2. The fuel system remains under pressure when the engine is not running. Release fuel system pressure before disconnecting any fuel line to reduce the chance of presonal injury or fire damage to vehicle components.
- 1) IG "OFF" and disconnect Fuel Pump Relay in Junction Box.
- 2) Start-up and wait until it stops itself.
- 3) IG "OFF" and connect Fuel Pump Relay.
- 4) Install the fuel pressure gauge to the delivery pipe with the fuel pressure gauge adaptor.
- 5) Activate the fuel pump, and with fuel pressure applied, check that there is no fuel leakage from the pressure gauge or connection part.
- Measure the fuel pressure at idle.

Specification: 374.6 ~ 384.4 kPa(3.82 ~ 3.92 kg/cm², 54.3 ~ 55.8 psi)

7) Is the measured fuel pressure within specifications?

YES

FL -365

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

Repair or replace according to the below table. And then, go to "Verification of Vehicle Repair" procedure.

Condition	Possible Cause
Fuel Pressure is too low	Fuel filter,fuel pressure regulator, in-tank fuel hose or the fuel pump
Fuel Pressure is too high	Fuel pressure regulator, hose or pipe

VERIFICATION OF VEHICLE REPAIR ECTA3BBS

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC

Go to the applicable troubleshooting procedure.

FL -366 FUEL SYSTEM

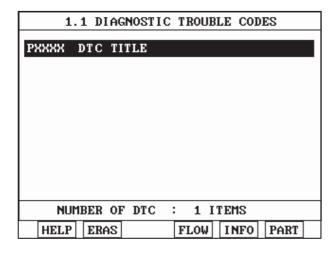
DTC P0315 SEGMENT TIME ACQUISITION INCORRECT

GENERAL DESCRIPTION EC7CF343

The Crankshaft Position Sensor (CKPS) is a magnetic field sensitive type sensor that generates voltage using a sensor and a target wheel mounted on the crankshaft; there are 58 slots in the target wheel where one is longer than the others. During one crankshaft rotation there are 58 rectangular signals and one longer signal. The PCM calculates engine RPM by using the sensor's signal and controls the injection duration and the ignition timing. Using the signal differences caused by the longer slot, the PCM identifies which cylinder is at top dead center.

DTC DESCRIPTION E1F05755

Checking tooth error correction under detecting condition, if the TEC(Tooth Error Correction) is out of Threshold value, PCM sets P0315.


DTC DETECTING CONDITION E8494BC2

Item	Detecting Condition	Possible cause
DTC Strategy	 This DTC indicates that crankwheel tooth error has not been learned. 	
Enable Conditions عوليت محدود)	 10% Engine load < 90% 2000 rpm engine speed 4000 rpm TEC(Tooth Error Correction) RPM stability timer > 10sec 0 (32°F) < coolant temperature < 110 (230°F) Not active disabling faults 	Loosened CKPSTarget wheelPCM
Threshold value	 Distance driven without learning(during fuel cut off) tooth error 6500km(4038.91275 mile) Acutal Value is higher or lower than calibrated value 	
Diagnosis Time	Continuous	
MIL On Condition	DTC only	

MONITOR DTC STATUS E092040F

- 1. Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu.
 - 4) Read "DTC Status" parameter.

FL -367

PXXXX DTC TITLE

1.MIL STATUS: ON/OFF
2.DTC STATUS: PRESENT/HISTORY
3.DIAG.STATUS: DIAGNOSIS FINISHED!

SGHFL7305L

5) Is "Present" Fault displayed?

YES

Go to "Component Inspection" procedure.

NO

Fault is intermittent caused by PCM memory was not cleared after repair. Erase DTC and drive the vehicle to satisfy the enable condition then, go to " Component Inspection" procedure.

COMPONENT INSPECTION E9FB5821

- 1. Visually check CKPS and target wheel
 - 1) IG "OFF"
 - 2) Visually check CKPS is loosened or target wheel is deformed or damaged.
 - 3) Are normal conditions present?

YES

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

NO

Repair or replace as necessary and then go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR EC4F9988

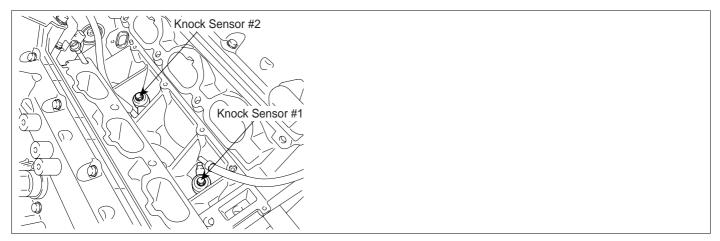
After a repair, it is essential to verify that the fault has been corrected.

- Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter

FL -368 FUEL SYSTEM

4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC


Go to the applicable troubleshooting procedure.

FL -369

KNOCK SENSOR 1 CIRCUIT DTC P0325

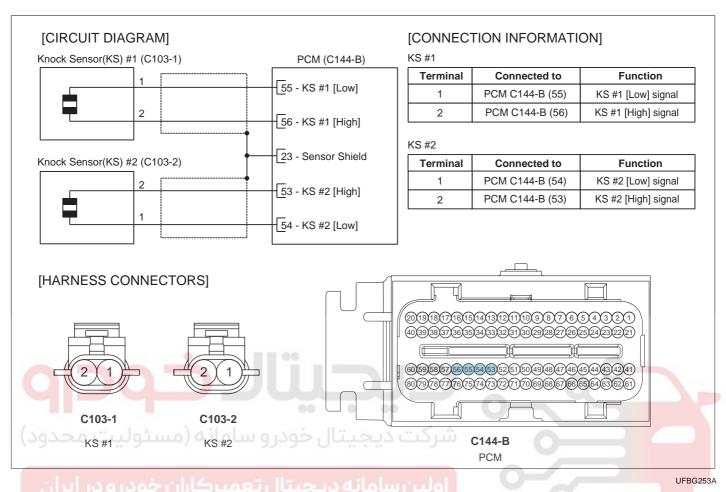
COMPONENT LOCATION

SGHFL7320N

GENERAL DESCRIPTION

The knock sensor is attached to the cylinder block and senses engine knocking. The sensor contains a piezoelectric element that converts vibration (or noise) into voltage signal and sends this signal to PCM. With input signals from camshaft position and crankshaft position sensor, PCM can identify which cylinder is knocking. PCM filters vibrations and determines if the vibrations are knocking signal. The Engine Control Module (PCM) uses this signal to suppress knocking by retarding ignition timing. The PCM will set a code (Malfunction Indicator Lamp will Not turn on) if during two driving cycles the Knock sensor's output voltage falls below minimum threshold. This code indicates an unexpected vibration is being read by the Knock sensor or PCM under normal engine operation.

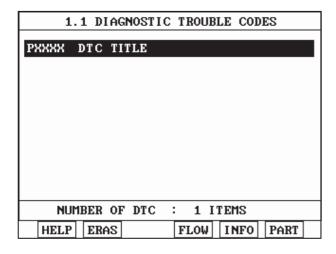
DTC DESCRIPTION E8416761


Checking the range of input signal with a knock sensor under detecting condition, PCM senses open in knock sensor circuit or malfunction of sensor. If a knock signal or noise level is inputted without the specified value during standard duration, PCM sets P0325.

DTC DETECTING CONDITION E3494B71

Item	Detecting Condition	Possible cause
DTC Strategy	Signal open	
Enable Conditions	Pressure in intake manifold is normal.Engine speed 2000 rpm	Poor connectionOpen in harnessKnock sensor
Threshold value	• Filter coefficient < 1.0	
Diagnosis Time	Continuous	• PCM
MIL On Condition	DTC Only	

FL -370 FUEL SYSTEM


SCHEMATIC DIAGRAM E211DD2E

MONITOR DTC STATUS EEBF642C

- Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu.
 - 4) Read "DTC Status" parameter.

FL -371

PXXXX DTC TITLE

1.MIL STATUS: ON/OFF
2.DTC STATUS: PRESENT/HISTORY
3.DIAG.STATUS: DIAGNOSIS FINISHED!

SGHFL7305L

5) Is "Present" Fault displayed?

YES

Go to "Terminal and connector inspection" procedure.

NO

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

TERMINAL AND CONNECTOR INSPECTION EF7CB990

- Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- 2. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

Repair as necessary and go to "Verification of Vehicle Repair" procedure

NO

Go to "Signal Circuit Inspection" procedure.

SIGNAL CIRCUIT INSPECTION E5786078

- 1. Check open in harness
 - 1) IG "OFF" and disconnect knock sensor connector and PCM connector.
 - 2) Measure resistance between terminal 1 of knock sensor harness connector and terminal 55 of PCM harness connector(C144-B).

FL -372 FUEL SYSTEM

3) Measure resistance between terminal 2 of knock sensor harness connector and terminal 56 of PCM harness connector(C144-B).

Specification: Below 1

4) Is the measured resistance within specification?

If the problem is corrected after substituting with a known - good knock sensor, replace it. If the problem is pending, check for proper operating after substituting with a known - good PCM. and then if the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

Repair open in harness, and go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. After testing PCM on the vehicle, use this function before reusing the PCM

VERIFICATION OF VEHICLE REPAIR EE6F16A

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

YES

System performing to specification at this time. Clear the DTC

Go to the applicable troubleshooting procedure.

FL -373

DTC P0326 KNOCK SENSOR 1 CIRCUIT RANGE/PERFORMANCE (BANK 1)

COMPONENT LOCATION E07066E6

Refer to DTC P0325.

GENERAL DESCRIPTION E7187021

Refer to DTC P0325.

DTC DESCRIPTION E6D4A955

Checking the range of input signal with a knock sensor under detecting condition, PCM senses short in knock sensor circuit or malfunction of sensor. If the filtered knock signals are out of the threshold value, PCM sets P0326.

DTC DETECTING CONDITION E2CA9C8B

Item Detecting Condition		Possible cause
DTC Strategy	Signal short	
Enable Conditions	Pressure in intake manifold is normal.Engine speed 2000 rpm	Poor connection Short in harness
Threshold value	Knock Filtered Value < 5 or > 65	Knock sensor
Diagnosis Time	Continuous	• PCM
MIL On Condition	DTC Only	

SCHEMATIC DIAGRAM E00F769C

Refer to DTC P0325.

MONITOR DTC STATUS ECA4B6EA

Refer to DTC P0325.

TERMINAL AND CONNECTOR INSPECTION EC3F3BE4

Refer to DTC P0325.

SIGNAL CIRCUIT INSPECTION E2813CB5

- Check short to battery in harness
 - IG "OFF" and disconnect knock sensor connector.
 - 2) IG "ON" and ENG "OFF"
 - 3) Measure voltage between terminal 1 of knock sensor harness connector and chassis ground.
 - 4) Measure voltage between terminal 2 of knock sensor harness connector and chassis ground.

Specification: Approx. 1.5V

FL -374 FUEL SYSTEM

5) Is the measured voltage within specification?

YES

Go to "Check short to ground in harness" as follows.

NO

Repair short to battery in harness, and go to "Verification of Vehicle Repair" procedure.

- 2. Check short to ground in harness
 - 1) IG "OFF" and disconnect knock sensor connector and PCM connector.
 - Measure resistance between terminal 1 of knock sensor harness connector and chassis ground.
 - 3) Measure resistance between terminal 2 of knock sensor harness connector and chassis ground.

Specification: Infinite

4) Is the measured resistance within specification?

YES

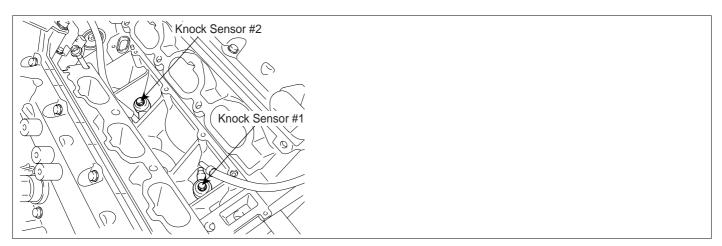
If the problem is corrected after substituting with a known - good knock sensor, replace it. If the problem is pending, check for proper operating after substituting with a known - good PCM. and then if the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

NO

Repair short to ground in harness, and go to "Verification of Vehicle Repair" procedure.

NOTE

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. After testing PCM on the vehicle, use this function before reusing the PCM


VERIFICATION OF VEHICLE REPAIR E54464DC

Refer to DTC P0325.

FL -375

DTC P0330 KNOCK SENSOR 2 CIRCUIT

COMPONENT LOCATIONS

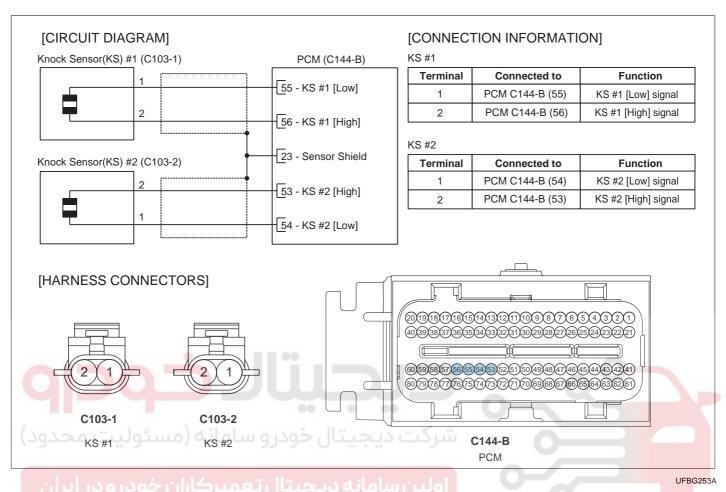
SGHFL7320N

GENERAL DESCRIPTION EC

The knock sensor is attached to the cylinder block and senses engine knocking. The sensor contains a piezoelectric element that converts vibration (or noise) into voltage signal and sends this signal to PCM. With input signals from camshaft position and crankshaft position sensor, PCM can identify which cylinder is knocking. PCM filters vibrations and determines if the vibrations are knocking signal. The Engine Control Module (PCM) uses this signal to suppress knocking by retarding ignition timing. The PCM will set a code (Malfunction Indicator Lamp will Not turn on) if during two driving cycles the Knock sensor's output voltage falls below minimum threshold. This code indicates an unexpected vibration is being read by the Knock sensor or PCM under normal engine operation.

ولین ساماله دیجیتال تعمیرکاران خود او ا

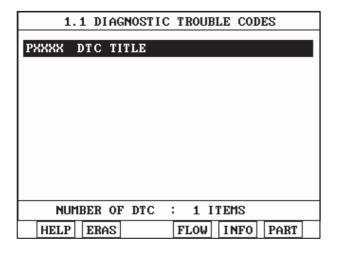
DTC DESCRIPTION EB2370F9


Checking the range of input signal with a knock sensor under detecting condition, PCM senses open in knock sensor circuit or malfunction of sensor. If a knock signal or noise level is inputted without the specified value during standard duration, PCM sets P0330.

DTC DETECTING CONDITION E5D73A42

Item	Detecting Condition	Possible cause
DTC Strategy	Signal open	
Enable Conditions	Pressure in intake manifold is normal.Engine speed 2000 rpm	Poor connection Open in harness
Threshold value • Filter coefficient < 1.0		Knock sensor
Diagnosis Time	Continuous	• PCM
MIL On Condition	DTC Only	

FL -376 FUEL SYSTEM


SCHEMATIC DIAGRAM E9B3E29E

MONITOR DTC STATUS EE75D5E3

- Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu.
 - 4) Read "DTC Status" parameter.

FL -377

PXXXX DTC TITLE

1.MIL STATUS: ON/OFF
2.DTC STATUS: PRESENT/HISTORY
3.DIAG.STATUS: DIAGNOSIS FINISHED!

SGHFL7305L

5) Is "Present" Fault displayed?

YES

Go to "Terminal and connector inspection" procedure.

NO

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

TERMINAL AND CONNECTOR INSPECTION ECD3B84D

- 1. Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- 2. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

Repair as necessary and go to "Verification of Vehicle Repair" procedure

NO

Go to "Signal Circuit Inspection" procedure.

SIGNAL CIRCUIT INSPECTION ED23245A

- 1. Check open in harness
 - 1) IG "OFF" and disconnect knock sensor connector and PCM connector.
 - 2) Measure resistance between terminal 1 of knock sensor harness connector and terminal 54 of PCM harness connector(C144-B).

FL -378 FUEL SYSTEM

3) Measure resistance between terminal 2 of knock sensor harness connector and terminal 53 of PCM harness connector(C144-B).

Specification: Below 1

4) Is the measured resistance within specification?

If the problem is corrected after substituting with a known - good knock sensor, replace it. If the problem is pending, check for proper operating after substituting with a known - good PCM. and then if the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

Repair open in harness, and go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. After testing PCM on the vehicle, use this function before reusing the PCM

VERIFICATION OF VEHICLE REPAIR ES

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

YES

System performing to specification at this time. Clear the DTC

Go to the applicable troubleshooting procedure.

FL -379

DTC P0331 KNOCK SENSOR 2 CIRCUIT RANGE/PERFORMANCE (BANK 2)

COMPONENT LOCATION EB286D34

Refer to DTC P0330.

GENERAL DESCRIPTION E49DF60D

Refer to DTC P0330.

DTC DESCRIPTION EAFEED14

Checking the range of input signal with a knock sensor under detecting condition, PCM senses short in knock sensor circuit or malfunction of sensor. If the filtered knock signals are out of the thresold value. uring standard duration, PCM sets P0331.

DTC DETECTING CONDITION EB8CFCAS

Item	Detecting Condition	Possible cause
DTC Strategy	Signal short	
Enable Conditions Pressure in intake manifold is normal. Engine speed 2000 rpm		Poor connection Short in harness
Threshold value	Knock Filtered Value 5 or 65	Knock sensor
Diagnosis Time • Continuous		• PCM
MIL On Condition	DTC Only	

SCHEMATIC DIAGRAM E31F5FBB

Refer to DTC P0330.

MONITOR DTC STATUS E3646EB4

Refer to DTC P0330.

TERMINAL AND CONNECTOR INSPECTION E22D90CS

Refer to DTC P0330.

SIGNAL CIRCUIT INSPECTION E815E89F

- Check short to battery in harness
 - 1) IG "OFF" and disconnect knock sensor connector.
 - 2) IG "ON" and ENG "OFF"
 - 3) Measure voltage between terminal 1 of knock sensor harness connector and chassis ground
 - 4) Measure voltage between terminal 2 of knock sensor harness connector and chassis ground.

Specification: Approx. 1.5V

FL -380 FUEL SYSTEM

5) Is the measured voltage within specification?

YES

Go to "Check short to ground in harness" as follows.

NO

Repair short to battery in harness, and go to "Verification of Vehicle Repair" procedure.

- 2. Check short to ground in harness
 - 1) IG "OFF" and disconnect knock sensor connector and PCM connector.
 - Measure resistance between terminal 1 of knock sensor harness connector and chassis ground.
 - 3) Measure resistance between terminal 2 of knock sensor harness connector and chassis ground.

Specification: Infinite

4) Is the measured resistance within specification?

YES

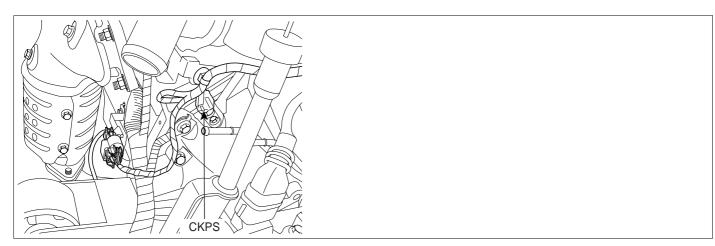
If the problem is corrected after substituting with a known - good knock sensor, replace it. If the problem is pending, check for proper operating after substituting with a known - good PCM. and then if the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

NO

Repair short to ground in harness, and go to "Verification of Vehicle Repair" procedure.

NOTE

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. After testing PCM on the vehicle, use this function before reusing the PCM


VERIFICATION OF VEHICLE REPAIR E5C2CC19

Refer to DTC P0330.

FL -381

DTC P0335 CRANKSHAFT POSITION SENSOR A CIRCUIT

COMPONENT LOCATION EB72017A

SGHFL7321N

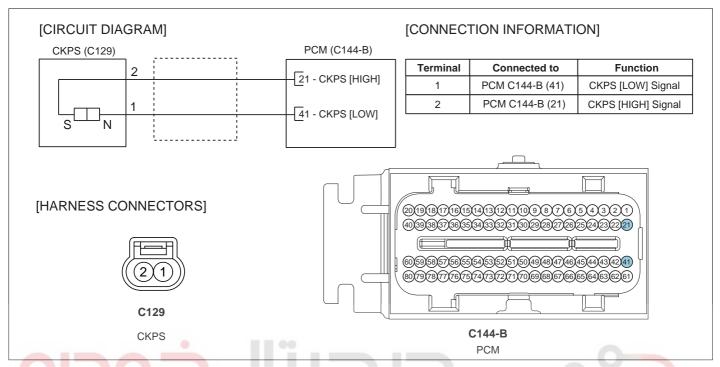
GENERAL DESCRIPTION E2CE

The Crankshaft Position Sensor (CKPS) is a magnetic field sensitive type sensor that generates voltage using a sensor and a target wheel mounted on the crankshaft; there are 58 slots in the target wheel where one is longer than the others. During one crankshaft rotation there are 58 rectangular signals and one longer signal. The PCM calculates engine RPM by using the sensor's signal and controls the injection duration and the ignition timing. Using the signal differences caused by the longer slot, the PCM identifies which cylinder is at top dead center.

DTC DESCRIPTION EAD9E423

Checking reference signals from CKPS under detecting condition, if any signal is not detected for more than 0.15 sec., PCM sets P0335. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

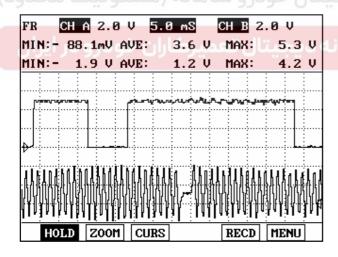
DTC DETECTING CONDITION E79AFB74

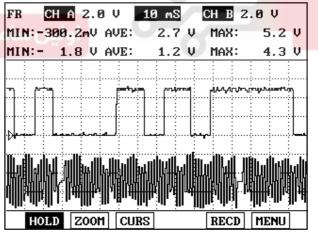

Item	Detecting Condition	Possible cause
DTC Strategy	Check reference wave during cranking	
IG "ON", Cranking or engine-off during driving No DTC related to CAM Camshaft positon sensor state change		Poor connectionOpen in harness
Threshold value • No reference signal over 0.15 sec.		CKP sensor PCM
Diagnosis Time • 0.15 sec.]
MIL On Condition • 2 driving cycles		

SPECIFICATION EA8C5FCD

Resistance	700 ± 70
------------	----------

FL -382 FUEL SYSTEM

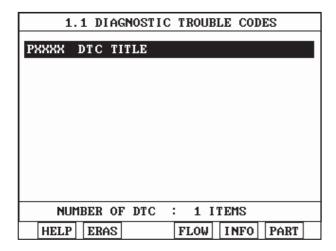

SCHEMATIC DIAGRAM E10AE4A3



SGHF17010N

SIGNAL WAVEFROM AND DATA

E362672E



EGRF610K

MONITOR DTC STATUS E5E262A

- Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu.
 - 4) Read "DTC Status" parameter.

FL -383

PXXXX DTC TITLE

1.MIL STATUS: ON/OFF
2.DTC STATUS: PRESENT/HISTORY
3.DIAG.STATUS: DIAGNOSIS FINISHED!

SGHFL7305L

5) Is "Present" Fault displayed?

YES

Go to "Terminal and connector inspection" procedure.

NO

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

TERMINAL AND CONNECTOR INSPECTION EC5A6738

- 1. Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- 2. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

Repair as necessary and go to "Verification of Vehicle Repair" procedure

NO

Go to "Signal Circuit Inspection" procedure.

SIGNAL CIRCUIT INSPECTION E83C5227

- 1. Check voltage
 - 1) IG "OFF" and disconnect CKPS connector.
 - 2) IG "ON" and ENG "OFF"
 - 3) Measure voltage between terminal 1 of CKPS harness connector and chassis ground.

FL -384 FUEL SYSTEM

4) Measure voltage between terminal 2 of CKPS harness connector and chassis ground.

Specification: Approx. 1.4V

5) Is the measured voltage within specification?

YES

Go to "Component Inspection" procedure.

NO

Go to "Check open in harness" as follows.

- 2. Check open in harness
 - 1) IG "OFF" and disconnect CKPS connector and PCM connector.
 - 2) Measure resistance between terminal 1 of CKPS harness connector and terminal 41 of PCM harness connector (C144-B).
 - 3) Measure resistance between terminal 2 of CKPS harness connector and terminal 21 of PCM harness connector (C144-B).

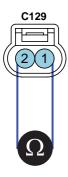
Specification: Below 1

4) Is the measured resistance within specification?

YES

Go to "Component Inspection" procedure.

NO


Repair open in harness, and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION E641DC8D

- 1. Check CKPS
 - 1) IG "OFF" and disconnect CKPS connector.
 - 2) Measure resistance between terminals 1 and 2 of CKPS connector.(Component side)

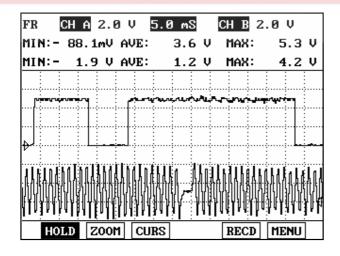
SPECIFIATION:

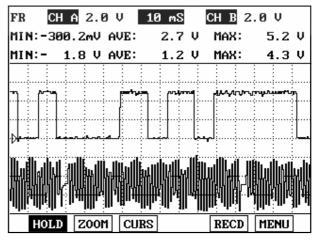
Resistance	700 ± 70
------------	----------

1. CKPS [LOW] Signal 2. CKPS [HIGH] Signal

SGHFL7225N

3) Is the measured resistance within specification?


Go to "Check signal waveform of CKPS" as follows.


NO

Substitute with a known - good CKPS and check for proper operation. If the problem is corrected, replace CKPS and go to "Verification of Vehicle Repair" procedure.

- 2. Check signal waveform of CKPS
 - 1) IG "OFF" and connect scantool.
 - 2) ENG "ON" and Measure signal waveform at terminal 1 or 2 of CKPS.

REFERENCE SIGNAL WAVEFORM:

EGRF610K

3) Is the measured signal waveform normal?

YES

Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary, and go to "Verification of Vehicle Repair" procedure.

NO

FL -386 FUEL SYSTEM

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. After testing PCM on the vehicle, use this function before reusing the PCM

VERIFICATION OF VEHICLE REPAIR EDF6B496

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC

Go to the applicable troubleshooting procedure.

FL -387

DTC P0336 CRANKSHAFT POSITION SENSOR A CIRCUIT RANGE/PERFORMANCE

COMPONENT LOCATION E2DA9B62

Refer to DTC P0335.

GENERAL DESCRIPTION ECA89724

Refer to DTC P0335.

DTC DESCRIPTION E6497997

Checking output signals from CKPS every 7.8 sec. under detecting condition, if an output signal is missing or redundant for more than 1.56 sec., PCM sets P0336. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION EFF15DB7

Item	Detecting Condition	Possible cause
DTC Strategy	Detecting extra/missing pulses between consecutive 58X reference pulses	
Enable Conditions	Engine running	Poor connectionNoise
Threshold value	Extra/ missing pulses	• Short in harness
Diagnosis Time Continuous (More than 1.56 sec.failure for every 7.8 sec.test)		Target wheelPCM
MIL On Condition	2 driving cycles	

SPECIFICATION EABO7F70

Resistance	700 ± 70
------------	----------

SCHEMATIC DIAGRAM E520B678

Refer to DTC P0335.

SIGNAL WAVEFROM AND DATA E18C7EC6

Refer to DTC P0335.

MONITOR DTC STATUS E465742D

Refer to DTC P0335.

TERMINAL AND CONNECTOR INSPECTION E9665069

Refer to DTC P0335.

FL -388 FUEL SYSTEM

SIGNAL CIRCUIT INSPECTION ECCDD942

- 1. Check voltage
 - 1) IG "OFF" and disconnect CKPS connector.
 - 2) IG "ON" and ENG "OFF"
 - 3) Measure voltage between terminal 1 of CKPS harness connector and chassis ground.
 - 4) Measure voltage between terminal 2 of CKPS harness connector and chassis ground.

Specification: Approx. 1.4V

5) Is the measured voltage within specification?

Go to "Component Inspection" procedure.

NO

Go to "Check short in harness" as follows.

- Check short in harness
 - 1) IG "OFF" and disconnect CKPS connector and PCM connector.
 - 2) Measure resistance between terminal 1(2) of CKPS harness connector and chassis ground.
 - 3) Measure resistance between terminals 1 and 2 of CKPS harness connector.

Specification: Infinite

4) Is the measured resistance within specification?

YES

Go to "Component Inspection" procedure.

NO

Repair short in harness, and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION E17FF00A

- Visually check CKPS and Target wheel
 - 1) IG "OFF"
 - 2) Check CKPS and target wheel for deformation or damage visually
 - 3) Are normal conditions present?

YES

Go to "Check CKPS resistance" as follows.

FL -389

NO

Repair or replace it, and go to "Verification of Vehicle Repair" procedure.

- Check CKPS resistance
 - 1) IG "OFF" and disconnect CKPS connector.
 - 2) Measure resistance between terminals 1 and 2 of CKPS connector. (Component side)

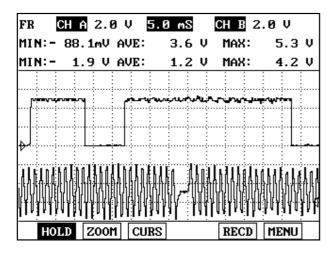
SPECIFIATION:

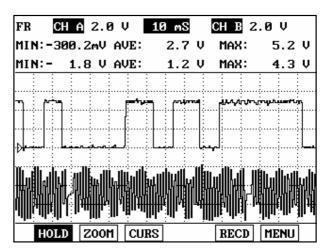
SGHFL7225N

Is the measured resistance within specification?

YES

Go to "Check signal waveform of CKPS" as follows.


NO


Substitute with a known - good CKPS and check for proper operation. If the problem is corrected, replace CKPS and go to "Verification of Vehicle Repair" procedure.

- Check signal waveform of CKPS
 - 1) IG "OFF" and connect scantool.
 - 2) ENG "ON" and Measure signal waveform at terminal 1 or 2 of CKPS.

FL -390 FUEL SYSTEM

REFERENCE SIGNAL WAVEFORM:

EGRF610K

3) Is the measured signal waveform normal?

YES

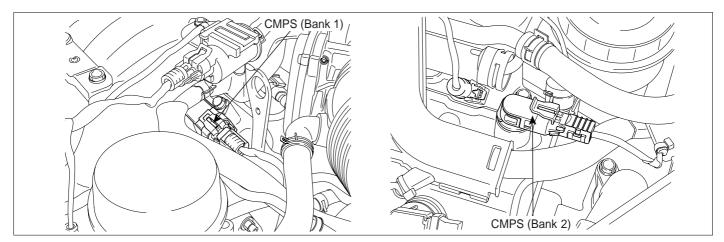
Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary, and go to "Verification of Vehicle Repair" procedure.

NO

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

اولین سامانه دیجیتال تعمیرکاران خودرو моте

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. After testing PCM on the vehicle, use this function before reusing the PCM


VERIFICATION OF VEHICLE REPAIR E709328D

Refer to DTC P0335.

FL -391

DTC P0340 CAMSHAFT POSITION SENSOR A CIRCUIT MALFUNCTION (BANK 1 OR SINGLE SENSOR)

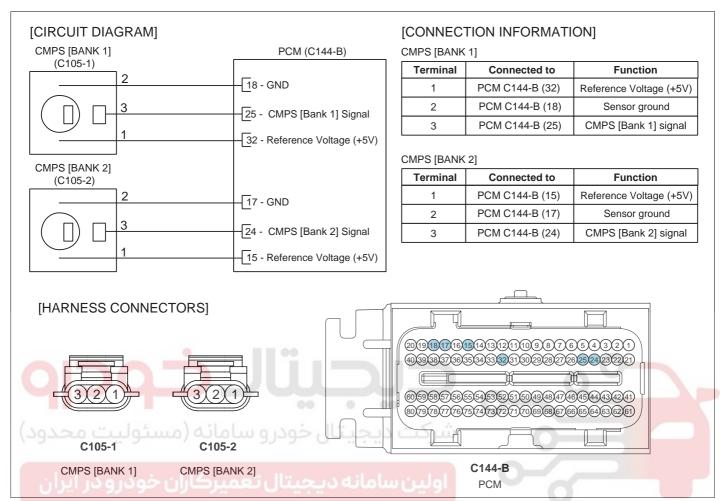
COMPONENT LOCATION EB59FEE

SGHFL7322N

GENERAL DESCRIPTION EBC71D58

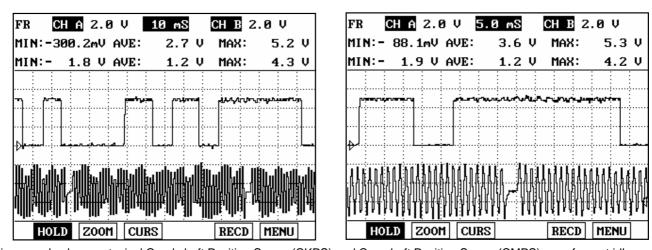
The Camshaft Position Sensor (CMPS) is a sensor that detects the compression TDC of the NO. 1 cylinder. The CMPS consists of a hall type sensor and a target on the end of the intake camshaft. When the target triggers the sensor, the sensor voltage is 5V. If not, the sensor voltage is 0V. These CMPS signal is sent to the PCM and the PCM uses the CMPS signal for synchronizing the firing of sequential fuel injectors.

DTC DESCRIPTION E93815FE


If PCM detects that cam event signal count is over 3 under detecting condition, PCM sets P0340. MIL(Malfunction Indication Lamp) turns on.

DTC DETECTING CONDITION E954C956

Item	Detecting Condition	Possible cause
DTC Strategy	Check if CAM sensor is synchronized correctly	 Poor connection Open in harness CMPS(Bank 1) PCM
Enable Conditions	Engine running	
Threshold value	Cam event signal count 3	
Diagnosis Time	Continuous	
MIL On Condition	1 driving cycles	


FL -392 FUEL SYSTEM

SCHEMATIC DIAGRAM E513B4F4

UFBG244A

SIGNAL WAVEFROM AND DATA E634DFB8

This example shows a typical Crankshaft Position Sensor(CKPS) and Camshaft Position Sensor(CMPS) waveform at idle. The PCM controls the injection and ignition timing by using these signals. Generally CKPS signal is used to detect the piston's position and CMPS signal is used to detect the Top Dead Center of each cylinder.

EGRF610R

FL -393

MONITOR DTC STATUS EFBI

- 1. Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu.
 - 4) Read "DTC Status" parameter.

Go to "Terminal and connector inspection" procedure.

NO

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

TERMINAL AND CONNECTOR INSPECTION E76DFB7E

- 1. Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- 2. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

Repair as necessary and go to "Verification of Vehicle Repair" procedure

NO

FL -394 FUEL SYSTEM

Go to "Power Circuit Inspection" procedure.

POWER CIRCUIT INSPECTION ECD97626

- 1. IG "OFF" and disconnect CMPS connector.
- 2. IG "ON" and ENG "OFF"
- 3. Measure voltage between terminal 1 of CMPS(B1) harness connector and chassis ground.

Specification: Approx. 5V

4. Is the measured voltage within specification?

Go to "Signal Circuit Inspection" procedure.

NO

Repair open or short to ground in harness, and go to "Verification of Vehicle Repair" procedure.

SIGNAL CIRCUIT INSPECTION

E67AEC19

- 1. Check voltage
 - 1) IG "OFF" and disconnect CMPS connector.
 - 2) IG "ON" and ENG "OFF"
 - 3) Measure voltage between terminal 3 of CMPS(B1) harness connector and chassis ground.

Specification: Approx. 5V

4) Is the measured voltage within specification?

YES

Go to "Component Inspection" as follows.

NO

Go to "Check open in harness' as follows.

- 2. Check open in harness
 - 1) IG "OFF" and disconnect CMPS connector and PCM connector.
 - 2) Measure resistance between terminal 3 of CMPS harness connector and terminal 25 of PCM harness connector (C144-B).

Specification: Below 1

3) Is the measured resistance within specification?

YES

FL -395

Go to "Ground Circuit Inspection" procedure.

Repair open in harness, and go to "Verification of Vehicle Repair" procedure.

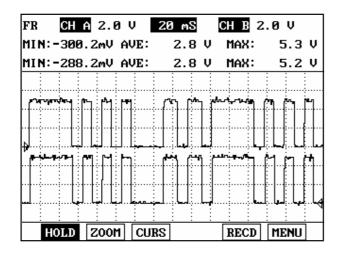
GROUND CIRCUIT INSPECTION EAB731AB

- 1. IG "OFF" and disconnect CMPS connector and then turn the ignition ON.
- 2. Measure voltage between terminal 3 of CMPS harness connector and chassis ground.
- 3. Measure voltage between terminals 2 and 3 of CMPS harness connector.

Specification: Measurement "A" - Measurement 'B' = Approx. below 200mV

4. Is the measured voltage within specification?

Go to "Component Inspection" procedure.


NO

Repair open or contact resistance in harness, and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION E88EAB43

- اولین سامانه دیجیتال تعمیرکاران خود Check CMPS
 - 1) IG "OFF" and connect scantool.
 - 2) ENG "ON" and Measure signal waveform at terminal 3 of CMPS.

REFERENCE SIGNAL WAVEFORM:

- 1. Reference Voltage (+5V)
- 2. Sensor ground
- 3. CMPS [Bank 1] signal

SBLF26547L

3) Is the measured signal waveform normal?

YES

FL -396 FUEL SYSTEM

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

Substitute with a known - good CMPS and check for proper operation. If the problem is corrected, replace CMPS and go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. After testing PCM on the vehicle, use this function before reusing the PCM

VERIFICATION OF VEHICLE REPAIR EFDCA8B8

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

YES

System performing to specification at this time. Clear the DTC

NO

Go to the applicable troubleshooting procedure.

FL -397

DTC P0341 CAMSHAFT POSITION SENSOR A CIRCUIT RANGE/PERFORMANCE (BANK 1 OR SINGLE SENSOR)

COMPONENT LOCATION EA2CFEDA

Refer to DTC P0340.

GENERAL DESCRIPTION E9CODDAS

Refer to DTC P0340.

DTC DESCRIPTION E8F41B6F

Checking oputput signals from CMP during engine running, if the expected number of cam tooth count is not observed, PCM sets P0341. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION E8B1A033

Item	Detecting Condition	Possible cause
DTC Strategy	Check if CAM sensor is synchronized correctly	Poor connection
Enable Conditions	Engine running	Short in harness
Threshold value	Cam tooth count 6	electrical noise Target wheel
Diagnosis Time	Continuous	• CMPS
MIL On Condition	2 driving cycles	• PCM

SCHEMATIC DIAGRAM E76B6126

Refer to DTC P0340.

SIGNAL WAVEFROM AND DATA EAFBABAC

Refer to DTC P0340.

MONITOR DTC STATUS E0872256

Refer to DTC P0340.

TERMINAL AND CONNECTOR INSPECTION EBFEC34

Refer to DTC P0340.

POWER CIRCUIT INSPECTION E9E2F12C

- 1. IG "OFF" and disconnect CMPS connector.
- 2. IG "ON" and ENG "OFF"
- 3. Measure voltage between terminal 1 of CMPS(B1) harness connector and chassis ground.

Specification: Approx. 5V

FL -398 FUEL SYSTEM

4. Is the measured voltage within specification?

Go to "Signal Circuit Inspection" procedure.

Repair open or short to ground in harness, and go to "Verification of Vehicle Repair" procedure.

SIGNAL CIRCUIT INSPECTION EBA7D8ED

- 1. Check short in harness
 - 1) IG "OFF" and disconnect CMPS connector.
 - Measure resistance between terminals 1 and 3 of CMPS(B1) harness connector.

Specification: Infinite

3) Is the measured resistance within specification?

YES

Go to "Check short to ground in harness' as follows.

NO

Repair short in harness, and go to "Verification of Vehicle Repair" procedure.

- 2. Check short to ground in harness
 - 1) IG "OFF" and disconnect CMPS connector and PCM connector.
 - 2) Measure resistance between terminal 3 of CMPS(B1) harness connector and chassis ground.

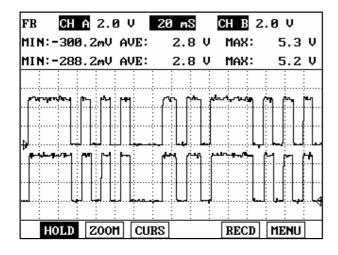
Specification: Infinite

3) Is the measured resistance within specification?

YES

Go to "Component Inspection" procedure.

NO


Repair short to ground in harness, and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION E011D72B

- 1. Check CMPS
 - 1) IG "OFF" and connect scantool.
 - 2) ENG "ON" and Measure signal waveform at terminal 3 of CMPS.

FL -399

REFERENCE SIGNAL WAVEFORM:

- 1. Reference Voltage (+5V)
- 2. Sensor ground
- 3. CMPS [Bank 1] signal

SBI F26547I

3) Is the measured signal waveform normal?

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

NO

Substitute with a known - good CMPS and check for proper operation. If the problem is corrected, replace CMPS and go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. After testing PCM on the vehicle, use this function before reusing the PCM

VERIFICATION OF VEHICLE REPAIR E4DAA537

Refer to DTC P0340.

FL -400 FUEL SYSTEM

DTC P0346 CAMSHAFT POSITION SENSOR "A" CIRCUIT RANGE/PERFORMANCE (BANK 2)

COMPONENT LOCATION E4A8415D

Refer to DTC P0340.

GENERAL DESCRIPTION E63048F0

Refer to DTC P0340.

DTC DESCRIPTION E88070FE

Checking oputput signals from CMP during engine running, if the expected number of cam tooth count is not observed, PCM sets P0346. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION EF2720E8

Item	Detecting Condition	Possible cause
DTC Strategy	Check if CAM sensor is synchronized correctly	Poor connection
Enable Conditions	Engine running	 Open or short in harness
Threshold value	Cam tooth count 6	electrical noise Target wheel
Diagnosis Time	Continuous	• CMPS
MIL On Condition	2 driving cycles	• PCM

SCHEMATIC DIAGRAM E4197E04

Refer to DTC P0340.

SIGNAL WAVEFROM AND DATA E4B8BD62

Refer to DTC P0340.

MONITOR DTC STATUS EB65C2D9

Refer to DTC P0340.

TERMINAL AND CONNECTOR INSPECTION E8206F99

Refer to DTC P0340.

POWER CIRCUIT INSPECTION E4D1FB56

- 1. IG "OFF" and disconnect CMPS connector.
- 2. IG "ON" and ENG "OFF"
- 3. Measure voltage between terminal 1 of CMPS(B2) harness connector and chassis ground.

Specification: Approx. 5V

FL -401

4. Is the measured voltage within specification?

Go to "Signal Circuit Inspection" procedure.

Repair open or short to ground in harness, and go to "Verification of Vehicle Repair" procedure.

SIGNAL CIRCUIT INSPECTION E1987884

- 1. Check voltage
 - 1) IG "OFF" and disconnect CMPS connector.
 - 2) IG "ON" and ENG "OFF"
 - 3) Measure voltage between terminal 3 of CMPS(B2) harness connector and chassis ground.

Specification: Approx. 5V

4) Is the measured voltage within specification?

YES

Go to "Check short in harness" as follows.

NO

Go to "Check open in harness" as follows.

- 2. Check short in harness
 - 1) IG "OFF" and disconnect CMPS connector.
 - 2) Measure resistance between terminals 1 and 3 of CMPS(B2) harness connector.

Specification: Infinite

3) Is the measured resistance within specification?

YES

Go to "Check short to ground in harness" as follows.

NO

Repair short in harness, and go to "Verification of Vehicle Repair" procedure.

- 3. Check short to ground in harness
 - 1) IG "OFF" and disconnect CMPS connector and PCM connector.
 - 2) Measure resistance between terminal 3 of CMPS(B2) harness connector and chassis ground.

Specification: Infinite

FL -402 FUEL SYSTEM

3) Is the measured resistance within specification?

YES

Go to "Ground Circuit Inspection" procedure.

NO

Repair short to ground in harness, and go to "Verification of Vehicle Repair" procedure.

- 4. Check open in harness
 - 1) IG "OFF" and disconnect CMPS connector and PCM connector.
 - Measure resistance between terminal 3 of CMPS harness connector and terminal 24 of PCM harness connector tor(C144-B).

Specification: Below 1

3) Is the measured resistance within specification?

YES

Go to "Ground Circuit Inspection" procedure.

NO

Repair open in harness, and go to "Verification of Vehicle Repair" procedure.

GROUND CIRCUIT INSPECTION E1F1164F

- 1. IG "OFF" and disconnect CMPS connector and then turn the ignition ON.
- 2. Measure voltage between terminal 3 of CMPS harness connector and chassis ground.
- 3. Measure voltage between terminals 2 and 3 of CMPS harness connector.

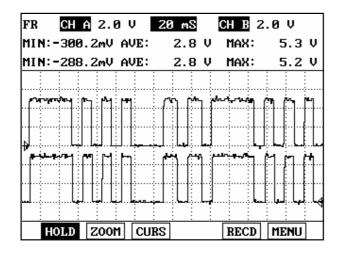
Specification: Measurement "A" - Measurement 'B' = Approx. below 200mV

4. Is the measured voltage within specification?

YES

Go to "Component Inspection" procedure.

NO


Repair open or contact resistance in harness, and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION E87E82F3

- Check CMPS
 - 1) IG "OFF" and connect scantool.
 - 2) ENG "ON" and Measure signal waveform at terminal 3 of CMPS.

FL -403

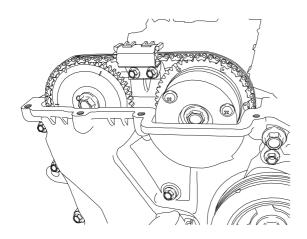
REFERENCE SIGNAL WAVEFORM:

- 1. Reference Voltage
- 2. Sensor ground
- 3. CMPS [Bank 2]

SBLF26556L

3) Is the measured signal waveform normal?

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.



Check the electrical noise of signal waveform, and go to "Check target wheel of CAM shaft" as follows.

NOTE

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. After testing PCM on the vehicle, use this function before reusing the PCM

- 2. Check target wheel of CAM shaft
 - 1) IG "OFF"
 - 2) Remove the cover of cylinder head and check target wheel state of bank 2.

EGRF611I

3) Is the target wheel state normal?

FL -404 FUEL SYSTEM

YES

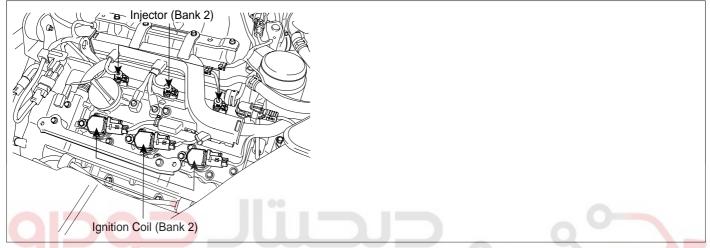
Substitute with a known - good CMPS and check for proper operation. If the problem is corrected, replace CMPS and go to "Verification of Vehicle Repair" procedure.

NO

Repair or replace it, and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR E52AD893

Refer to DTC P0340.



FL -405

DTC P0351	IGNITION COIL "A" PRIMARY / SECONDARY CIRCUIT	
DTC P0352	IGNITION COIL "B" PRIMARY / SECONDARY CIRCUIT	
DTC P0353	IGNITION COIL "C" PRIMARY / SECONDARY CIRCUIT	ļ
DTC P0354	IGNITION COIL "D" PRIMARY / SECONDARY CIRCUIT	ļ
DTC P0355	IGNITION COIL "E" PRIMARY / SECONDARY CIRCUIT	ļ
DTC P0356	IGNITION COIL "F" PRIMARY / SECONDARY CIRCUIT	ļ

COMPONENT LOCATION EBD608AF

SGHFL7319N

GENERAL DESCRIPTION EF38

With the ignition switch in the ON or START position, voltage is applied to the ignition coil. Each ignition coil consists of two coils. High tension leads go to each cylinder from the ignition coils. The ignition coils fire two spark plugs on every power stroke (the cylinder under compression and the cylinder on the exhaust stroke). The Engine Control Module (PCM) provides a switching circuit to ground for primary coil circuit control. The PCM uses the crankshaft position sensor and camshaft position sensor signal to time the energizing of the coil. When a primary ignition coil is energized and de-energized, the secondary coil produces a high voltage spike to the attached spark plugs.

DTC DESCRIPTION E86FF6FB

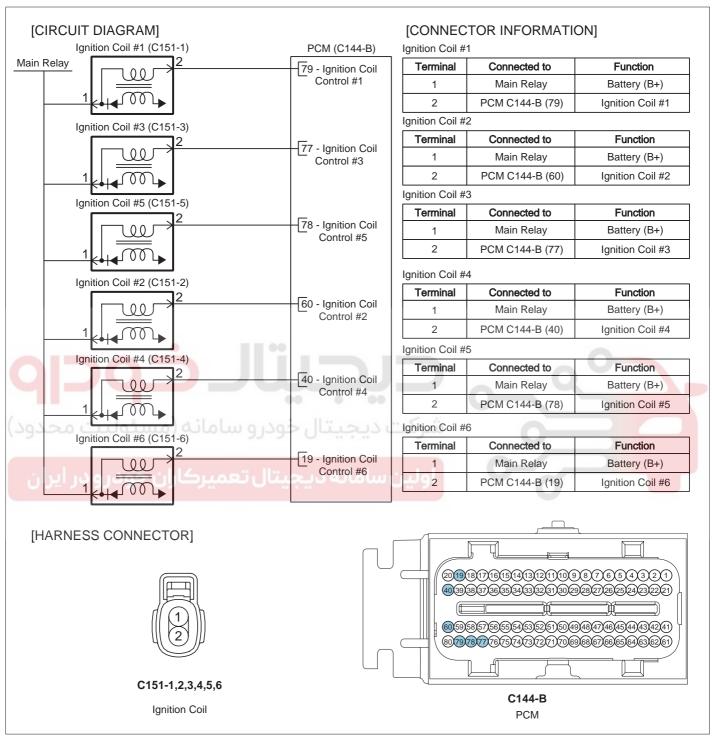
Checking output signals from ignition coils every 10 sec. under detecting condition, if the signals indicating open or short in the circuit are detected for more than 5 sec., PCM sets this DTC. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

FL -406 FUEL SYSTEM

DTC DETECTING CONDITION E2D804A3

Item	Detecting Condition	Possible cause
DTC Strategy	Detects a short to ground, to battery or open circuit	
EnableConditions	 NO DTC related to this item Engine running 11V Battery voltage 16V The above conditions are met > 0.5 sec. 	Poor connectionOpen or short in harness
Threshold value	Open or short	Ignition Coil PCM
DiagnosisTime	Continuous (More than 5 sec.failure for every 10 sec.test)	
MIL On Condition	2 driving cycles	

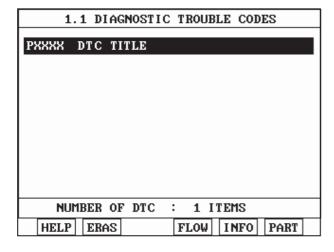
SPECIFICATION E114AA77

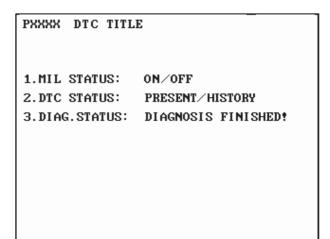

	Primary Coil	Secondary Coil
Resistance ()	0.62 ± 10% ()	7.0 ± 15% (k)

FL -407

SCHEMATIC DIAGRAM E146FBI

SGHFL7306L


MONITOR DTC STATUS E00AC99B


- 1. Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".

FL -408 FUEL SYSTEM

 Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu

4) Read "DTC Status" parameter.

SGHFL7305L

5) Is "Present" Fault displayed?

YES

Go to "Terminal and connector inspection" procedure.

NO

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

TERMINAL AND CONNECTOR INSPECTION EB1COA9D

- 1. Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- 2. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

Repair as necessary and go to "Verification of Vehicle Repair" procedure

NO

Go to " Power Circuit Inspection " procedure.

POWER CIRCUIT INSEPCTION E2AF7DB3

- Check voltage
 - 1) IG "OFF" and disconnect Ignition Coil connector.

FL -409

- 2) IG "ON" and ENG "OFF"
- 3) Measure voltage between terminal 1 of ignition coil harness connector and chassis ground.

Specification: Approx. B+

4) Is the measured voltage within specification?

Go to "Control Circuit Inspection" procedure.

NO

Check fuse connected to ignition coil for open.

Repair open in harness, and go to "Verification of Vehicle Repair" procedure.

CONTROL CIRCUIT INSPECTION E5892841

- 1. Check short to battery in harness.
 - 1) IG "OFF" and disconnect ignitioncoil connector and PCM connector.
 - 2) Measure resistance between terminals 1 and 2 of ignition coil harness connector.

Specification: Infinite

3) Is the measured resistance within specification?

ولین سامانه دیجیتال تعمیرکاران خودر _{YES}

Go to "Check short to ground in harness" as follows.

NO

Repair short to battery in harness, and go to "Verification of Vehicle Repair" procedure.

- 2. Check short to ground in harness
 - 1) IG "OFF" and disconnect ignition coil connector and PCM connector.
 - 2) Measure resistance between terminal 2 of ignition coil harness connector and chassis ground.

Specification: Infinite

3) Is the measured resistance within specification?

YES

Go to "Check open in harness" as follows.

NO

Repair short to ground in harness, and go to "Verification of Vehicle Repair" procedure.

3. Check open in harness

FL -410 **FUEL SYSTEM**

- 1) IG "OFF" and disconnect Ignition Coil connector and PCM connector.
- 2) P0351) Measure resistance between terminal 2 of Ignition Coil harness connector and terminal 79 of PCM harness connector[C144-B].

P0352) Measure resistance between terminal 2 of Ignition Coil harness connector and terminal 60 of PCM harness connector[C144-B].

P0353) Measure resistance between terminal 2 of Ignition Coil harness connector and terminal 77 of PCM harness connector[C144-B].

P0354) Measure resistance between terminal 2 of Ignition Coil harness connector and terminal 40 of PCM harness connector[C144-B].

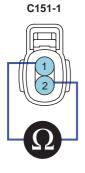
P0355) Measure resistance between terminal 2 of Ignition Coil harness connector and terminal 78 of PCM harness connector[C144-B].

P0356) Measure resistance between terminal 2 of Ignition Coil harness connector and terminal 19 of PCM harness connector[C144-B].

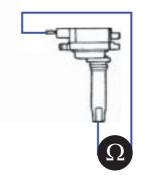
Specification: Below 1

Is the measured resistance within specification?

Go to "Component Inspection" procedure.


Repair open in harness, and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION


- Check Ignition Coil
 - IG "OFF" and disconnect ignition coil connector.
 - Measure resistance between terminals 1 and 2 of ignition coil connector.(Component side)
 - 3) Measure resistance between terminal 1 of ignition coil connector and out terminal of secondary ignition coil.

SPECIFICATION:

	Primary Coil (A)	Secondary Coil (B)
Resistance ()	0.62 ± 10% ()	7.0 ± 15% (k)

- 1. Battery Voltage 2. Ignition Control

SGHFL7233N

Is the measured resistance within specification?

FL -411

Substitute with a known - good PCM and check for proper operation

If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

Substitute with a known - good Ignition Coil and check for proper operation.

If the problem is corrected, replace Ignition Coil and go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. After testing PCM on the vehicle, use this function before reusing the PCM

VERIFICATION OF VEHICLE REPAIR EDDCF44

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- Is "History (Not Present)" fault displayed?

YES

System performing to specification at this time. Clear the DTC

NO

Go to the applicable troubleshooting procedure.

FL -412 FUEL SYSTEM

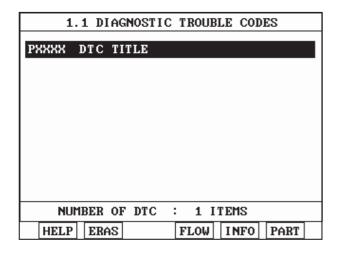
DTC P0420 CATALYST SYSTEM EFFICIENCY BELOW THRESHOLD (BANK 1)

GENERAL DESCRIPTION ED7E4AE4

The PCM uses dual oxygen sensors to monitor the efficiency of the manifold catalytic converter (warm-up catalytic converter). By monitoring the oxygen storage capacity of a catalyst, its efficiency can be indirectly calculated. The upstream (front) HO2S is used to detect the amount of oxygen in the exhaust gas before it enters the catalytic converter. A low voltage indicates high oxygen contents (lean air mixture). A high voltage indicates low oxygen contents (rich air mixture). When the catalyst efficiency drops, no chemical reaction takes place. This means the concentration of oxygen will be the same at the rear as it is at the front.

DTC DESCRIPTION EE6D7E95

If the oxygen storage time for Bank 1 is lower than threshold, the PCM determines that a fault exists and a DTC is stored. MIL(Malfunction Indication Lamp) turns on.


DTC DETECTING CONDITION EDOFBB50

Item	Detecting Condition	Possible cause
DTC Strategy	 Manipulates Airfuel and stores the times it takes for the pre and post converter oxygen sensors to switch. 	9
فولیت محدود) EnableConditions	 Engine Runtime 580 sec. Purge Concentration Learned 3 g/s Airflow 10 g/s Throttle closed 1.5% 70 (158 °F) Coolant Temp. 120 (248 °F) -7 (19.4 °F) Ambient Temp. 105 (221 °F) Barometer 72 kPa Max number of test attempts 12 Closed Loop 250 (482 °F) Catalyst Temp. 950 (1742 °F) Fuel learning completed Vehicle speed 3 kph(1.8 mph) Not airfuel ramping Max idle time (about 60 sec.) not exceeded No disabling faults present 	Catalyst Converter
Threshold value	Oxygen Storage Time < 3.25 sec.	
DiagnosisTime	• 15 sec.	
MIL On Condition	1 Driving cycle	

MONITOR SCANTOOL DATA EAD28FD4

- Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu
 - 4) Read "DTC Status" parameter.

FL -413

PXXXX DTC TITLE

1.MIL STATUS: ON/OFF
2.DTC STATUS: PRESENT/HISTORY
3.DIAG.STATUS: DIAGNOSIS FINISHED!

SGHFL7305L

5) Is "Present" Fault displayed?

YES

Substitute with a known - good Catalyst Converter and check for proper operation. If the problem is corrected, Go to "Verification of Vehicle Repair" procedure.

NO

Go to "Component Inspection" procedure.

COMPONENT INSPECTION EFD8D4E1

- 1. Monitor the Catalyst Converter
 - 1) Clear DTC.
 - 2) Start the engine and warm it up until the radiator fan comes on (more than at least 10 minutes).
 - 3) Drive at a steady speed between 45-55 mph(72-88 km/h) for 30 seconds.
 - 4) Stop and then maintain idle state for 120 seconds in D-position.
 - 5) Repeat step 3 once again.
 - 6) Stop and then keep it in idle state(D-positon) for 120 seconds.
 - 7) Repeat step 3 once again.
 - 8) Stop and then maintain idle state for 120 seconds in D-position.
 - 9) IG "OFF"
 - 10) Repeat steps 3 through 9 three times.
 - 11) Check if catalyst monitoring readiness is complete. so, if the readiness is incomplete, repeat steps 2 through 10.
 - 12) Does the scan tool show DTC P0420?

YES

Substitute with a known - good Catalyst Converter and check the signal waveform of HO2S for proper operation. If the problem is corrected, Go to "Verification of Vehicle Repair" procedure.

FL -414 FUEL SYSTEM

It was intermittent failure.

VERIFICATION OF VEHICLE REPAIR ED9B36ED

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC

NO

Go to the applicable troubleshooting procedure.

شرکت دیجیتال خودرو سامانه (مسئولیت محدود)

اولین سامانه دیجیتال تعمیرکاران خودرو در ایران

FL -415

DTC P0430 CATALYST SYSTEM EFFICIENCY BELOW THRESHOLD (BANK 2)

GENERAL DESCRIPTION E3D0BD55

Refer to DTC P0420.

DTC DESCRIPTION EEF1B865

If the oxygen storage time for Bank 2 is lower than threshold , the PCM determines that a fault exists and a DTC is stored and MIL(Malfunction Indication Lamp) turns on.

DTC DETECTING CONDITION E6F46B0F

Item	Detecting Condition	Possible cause
DTC Strategy	 Manipulates Airfuel and stores the times it takes for the pre and post converter oxygen sensors to switch. 	
EnableConditions	 Engine Runtime 580 sec. Purge Concentration Learned 3 g/s Airflow 10 g/s Throttle closed 1.5% 70 (158 °F) Coolant Temp. 120 (248 °F) -7 (19.4 °F) Ambient Temp. 105 (221 °F) Barometer 72 kPa Max number of test attempts 12 Closed Loop 250 (482 °F) Catalyst Temp. 950 (1742 °F) Fuel learning completed Vehicle speed 3 kph(1.8 mph) Not airfuel ramping Max idle time (about 60 sec.) not exceeded No disabling faults present No instrumentation slews active 	Catalyst Converter
Threshold value	Oxygen Storage Time < 3.25 sec.	
DiagnosisTime	• 15 sec.	
MIL On Condition	1 Driving cycle	

MONITOR SCANTOOL DATA E3986CFC

Refer to DTC P0420.

COMPONENT INSPECTION EE3F1C90

- 1. Monitor the Catalyst Converter
 - 1) Clear DTC.
 - 2) Start the engine and warm it up until the radiator fan comes on(more than at least 10 minutes).
 - 3) Drive at a steady speed between 45-55 mph(72-88 km/h) for 30 seconds.
 - 4) Stop and then maintain idle state for 120 seconds in D-position.

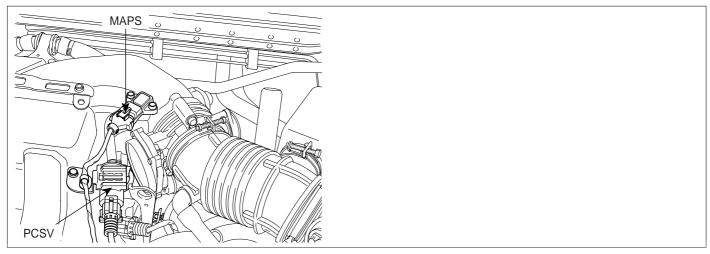
FL -416 FUEL SYSTEM

- 5) Repeat step 3 once again.
- 6) Stop and then keep it in idle state(D-positon) for 120 seconds.
- 7) Repeat step 3 once again.
- 8) Stop and then maintain idle state for 120 seconds in D-position.
- 9) IG "OFF"
- 10) Repeat steps 3 through 9 three times.
- 11) Check if catalyst monitoring readiness is complete. so, if the readiness is incomplete, repeat steps 2 through 10.
- 12) Does the scan tool show DTC P0430?

Substitute with a known - good Catalyst Converter and check the signal waveform of HO2S for proper operation. If the problem is corrected, Go to "Verification of Vehicle Repair" procedure.

It was intermittent failure.

VERIFICATION OF VEHICLE REPAIR E3717171


Refer to DTC P0420.

اولین سامانه دیجیتال تعمیرکاران خودرو در ایران

FL -417

DTC P0444 EVAP. EMISSION SYSTEM-PURGE CTRL. VALVE CIRCUIT OPEN

COMPONENT LOCATION EF5C806E

SGHFL7314N

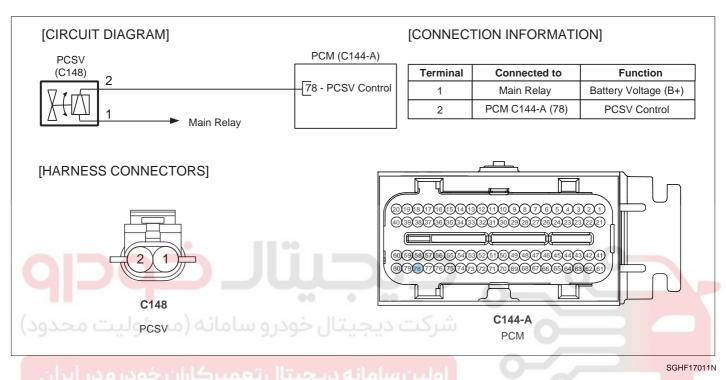
GENERAL DESCRIPTION E10

The evaporative emission control system prevents hydrocarbon (HC) vapors from the fuel tank from escaping into the atmosphere where they could form photochemical smog. Gasoline vapors are collected in the charcoal canister. The PCM controls the Purge Control Solenoid Valve (PCSV) to purge any collected vapors from the canister back to the engine for combustion. This valve is actuated by the purge control signal from the PCM and controls fuel vapor from the canister to the intake manifold.

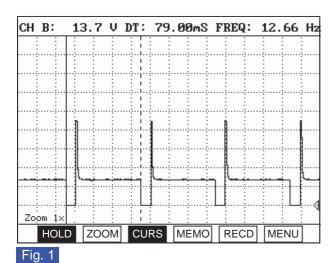
DTC DESCRIPTION ED11A85B

Checking output signals from PCSV every 10 sec. under detecting condition, if signals indicating open or short to ground in the circuit are detected for more than 5 sec., PCM sets P0444. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION EC62C052


Item	Detecting Condition	Possible cause
DTC Strategy	Open, short to ground	
EnableConditions	 Engine running 11V Battery voltage 16V Above enable conditions are met > 0.5 sec. 	Poor connection Open or short to ground
Threshold value	Open or short to ground	in harness • PCSV
DiagnosisTime	Continuous (More than 5 sec.failure for every 10 sec.test)	• PCM
MIL On Condition	2 driving cycles	

FL -418 FUEL SYSTEM


SPECIFICATION EBOTA1E

Item	Coil resistance()
PCSV	19.0 ~ 22.0 (at 20 / 68)

SCHEMATIC DIAGRAM E16AC501

SIGNAL WAVEFORM AND DATA E4E0535F

The Purge Control Solenoid Valve(PCSV) is open or closed by PCM and vacuum of intake manifold. At opening, fuel vapor from canister enters into intake manifold.

This photo shows the signal waveform of PCSV operating normally.

SBLFL7889N

FL -419

MONITOR DTC STATUS E46AA3

- 1. Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu
 - 4) Read "DTC Status" parameter.

Go to "Terminal and connector inspection" procedure.

NO

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

TERMINAL AND CONNECTOR INSPECTION EA40D6D2

- 1. Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- 2. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

Repair as necessary and go to "Verification of Vehicle Repair" procedure

NO

FL -420 FUEL SYSTEM

Go to " Power Circuit Inspection " procedure.

POWER CIRCUIT INSEPCTION EC52E12C

- 1. IG "OFF" and disconnect PCSV connector.
- 2. IG "ON" and ENG "OFF"
- 3. Measure voltage between terminal 1 of PCSV harness connector and chassis ground.

Specification: B+

4. Is the measured voltage within specification?

Go to "Control Circuit Inspection" procedure.

NO

Repair open or short to ground in harness, and go to "Verification of Vehicle Repair" procedure.

CONTROL CIRCUIT INSPECTION

E8D8DB8

- Check short to ground in harness.
 - 1) IG "OFF" and disconnect PCSV connector.
 - 2) IG "ON"
 - 3) Measure voltage between terminal 2 of PCSV harness connector and chassis ground.

Specification: Approx. 0 V

4) Is the measured voltage within specification?

YES

Go to "Check open in harness" as follows.

NO

Repair short to ground in harness, and go to "Verification of Vehicle Repair" procedure.

- 2. Check open in harness.
 - 1) IG "OFF" and disconnect PCSV connector and PCM connector.
 - 2) Measure resistance between terminal 2 of PCSV harness connector and terminal 78 of PCM harness connector (C144-A).

Specification: Below 1

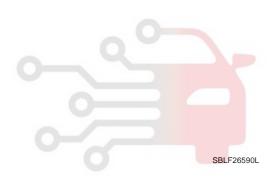
3) Is the measured resistance within specification?

YES

FL -421

Go to "Component Inspection" procedure.

Repair open in harness, and go to "Verification of Vehicle Repair" procedure.


COMPONENT INSPECTION E6E18680

- Check PCSV
 - 1) IG "OFF" and disconnect PCSV connector.
 - 2) Measure resistance between terminals 1 and 2 of PCSV connector.(Component side)

SPECIFICATION:

Item	Coil resistance()
PCSV	19.0 ~ 22.0 (at 20 / 68)

3) Is the measured resistance within specification?

YES

Substitute with a known - good PCM and check for proper operation.

If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

NO

Substitute with a known - good PCSV and check for proper operation.

If the problem is corrected, replace PCSV and go to "Verification of Vehicle Repair" procedure.

NOTE

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. After testing PCM on the vehicle, use this function before reusing the PCM

VERIFICATION OF VEHICLE REPAIR EBC23A0E

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions

FL -422 FUEL SYSTEM

- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC

Go to the applicable troubleshooting procedure.

FL -423

DTC P0445 EVAP. EMISSION SYSTEM-PURGE CTRL. VALVE CIRCUIT SHORTED

COMPONENT LOCATION E57D3A65

Refer to DTC P0444.

GENERAL DESCRIPTION EACA347F

Refer to DTC P0444.

DTC DESCRIPTION E4CDB20E

Checking output signals from PCSV every 10 sec. under detecting condition, if signals indicating short to battery in the circuit are detected for more than 5 sec., PCM sets P0445. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION E67329CO

Item	Detecting Condition	Possible cause
DTC Strategy	Short to battery	
EnableConditions	 Engine running 11V Battery voltage 16V Above enable conditions are met > 0.5 sec. 	 Poor connection Short to battery in harness
Threshold value	Short to battery	• PCSV
DiagnosisTime	Continuous (More than 5 sec.failure for every 10 sec.test)	• PCM
MIL On Condition	2 driving cycles	0

SPECIFICATION EC8516D2

Item	Coil resistance()
PCSV	19.0 ~ 22.0 (at 20 / 68)

SCHEMATIC DIAGRAM ED092E47

Refer to DTC P0444.

SIGNAL WAVEFORM AND DATA EDDEA909

Refer to DTC P0444.

MONITOR DTC STATUS E369A703

Refer to DTC P0444.

TERMINAL AND CONNECTOR INSPECTION EEBB253F

Refer to DTC P0444.

FL -424 FUEL SYSTEM

CONTROL CIRCUIT INSPECTION E2C0A97F

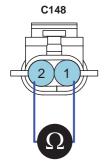
- 1. IG "OFF" and disconnect PCSV connector.
- 2. IG "ON" and ENG "OFF"
- 3. Measure voltage between terminal 2 of PCSV harness connector and chassis ground.

Specification: Approx. 0 V

4. Is the measured voltage within specification?

Go to "Component Insepction" procedure.

NO


Repair short to battery in harness, and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION EAOD7BS

- 1. Check PCSV
 - 1) IG "OFF" and disconnect PCSV connector.
 - 2) Measure resistance between terminals 1 and 2 of PCSV connector.(Component side)

SPECIFICATION:

نه دیجیتال تعمیرک _{tte} h) خودرو در ایران	اولین سام	Coil resistance()
PCSV	1	19.0 ~ 22.0 (at 20 / 68)

- 1. Battery voltage(B+)
- 2. PCSV Control

SBLF26590L

3) Is the measured resistance within specification?

YES

Substitute with a known - good PCM and check for proper operation.

If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

NO

Substitute with a known - good PCSV and check for proper operation.

If the problem is corrected, replace PCSV and go to "Verification of Vehicle Repair" procedure.

FL -425

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. After testing PCM on the vehicle, use this function before reusing the PCM

VERIFICATION OF VEHICLE REPAIR ECE43D57

Refer to DTC P0444.

FL -426 FUEL SYSTEM

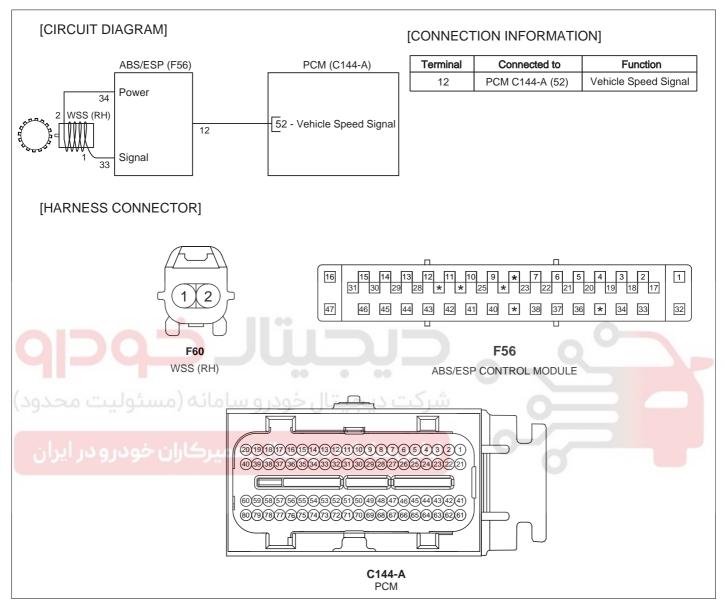
DTC P0501 VEHICLE SPEED SENSOR A RANGE/PERFORMANCE

GENERAL DESCRIPTION E752B8EE

The Vehicle Speed Sensor(VSS) or Wheel Speed Sensor (WSS) generates a waveform with a frequency proportional to the speed of the vehicle. The signal generated by the VSS or WSS informs the PCM not only if the vehicle speed is low or high but also if the vehicle is or is not moving. The PCM uses this signal to control the fuel injection, ignition timing, transaxle shift scheduling and torque converter clutch scheduling. The VSS or WSS signal is also used to detect rough road conditions.

DTC DESCRIPTION EC82EB4B

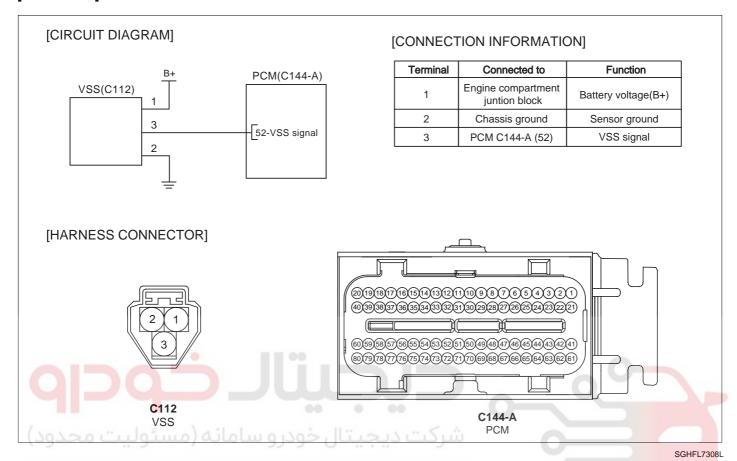
Checking vehicle speed signal every from vehicle speed sensor or ABS(or ESP) control every 30 sec. under detecting condition, if an signal is in the detecting condition for more than 20 sec., PCM sets P0501. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.


DTC DETECTING CONDITION E81AE52E

Ite	em	Detecting Condition	Possible cause
DTC S	Strategy	Detects the lack of vehicle speed signal	
الم	Case 1(Power)	 Engine Running No VSS disabling malfunction present No TPS fault present No MAP fault present 11V Ignition Voltage 16V Engine Coolant Temperature 60 (140) MAP 55kPa 	
Enable Condi-	ودرودر	 25% TPS 60% 1200rpm Engine Speed 4000rpm Vehicle Speed derived from transmission 10 kph(6.2 mph) 	
tions	Case 2(Decel)	 Engine Running No VSS disabling malfunction present No TPS fault present No MAP fault present 11V Ignition Voltage 16V Engine Coolant Temperature 60 (140) MAP 32kPa TPS 1% 1800rpm Engine Speed 6000rpm Transmission in gear 	 Poor connection Open or short in harness Vehicle Speed Sensor or Wheel speed sensor(FR) ABS or ESP control unit PCM
Thresh	Case 1(Power)	Vehicle Speed 10kph	
old value	Case 2(Decel)	Vehicle Speed 5kphDelta Engine Speed 100rpm	
Diagnos	sis Time	Continuous (More than 20 seconds failure for every 30 seconds test)	
MIL On 0	Condition	2 driving cycles	

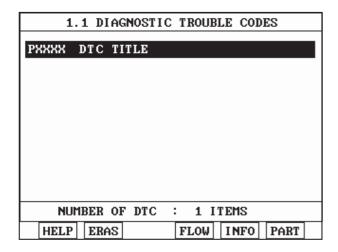
FL -427

SCHEMATIC DIAGRAM ED044


[EURO- /]

SGHFL7307L

FL -428 FUEL SYSTEM


[EURO- /]

MONITOR DTC STATUS EBA8F4E9

- Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu
 - 4) Read "DTC Status" parameter.

FL -429

PXXXX DTC TITLE

1.MIL STATUS: ON/OFF
2.DTC STATUS: PRESENT/HISTORY
3.DIAG.STATUS: DIAGNOSIS FINISHED!

SGHFL7305L

5) Is "Present" Fault displayed?

YES

Go to "Terminal and connector inspection" procedure.

NO

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

اولین سامانه دیجیتال تعمیرکاران خودرو [ر / یزEURO-

TERMINAL AND CONNECTOR INSPECTION

- 1. Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- 2. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

Repair as necessary and go to "Verification of Vehicle Repair" procedure

NO

Go to "Signal Circuit Inspection "procedure.

SIGNAL CIRCUIT INSPECTION

NOTE

This procedure is applied to vehicle with ABS (or ESP)
In case of no ABS(or ESP), refer to "C1203 Wheel speed sensor front-RH open/short".

- Check short to ground in harness
 - 1) IG "OFF"

FL -430 FUEL SYSTEM

- 2) Disconnect PCM connector and ABS or ESP control module connector.
- 3) Measure resistance between terminal 52 of PCM harness connector(C144-A) and chassis ground.

Specification: Infinite

4) Is the measured resistance within specifications?

Go to "Check open in harness" as follows.

NO

Repair short to ground in harness, and go to "Verification of Vehicle Repair" procedure.

- 2. Check for open in harness
 - 1) Ignition "OFF"
 - 2) Disconnect PCM connector and ABS or ESP control module connector.
 - 3) Measure resistance between terminal "52" of PCM harness connector and terminal "12" of ESP control module harness connector.

Specification: Approx. below 1

خودرو سامانه (مسئولیت**۸۵۳ س**

This picture is only applicable to vehicle with ESP

4) Is the measured resistance within specifications?

YES

Go to " Check wheel speed sensor " procedure.

NO

Check open in harenss.

Repair or replace as necessary and then, go to "Verification of Vehicle Repair" procedure.

- 3. Check wheel speed sensor
 - 1) IG "OFF"
 - 2) Check open or short in wheel speed sensor (Refer to "C1203 Wheel speed sensor front-RH open/short")
 - 3) Is the wheel speed sensor normal?

YES

Substitute with a known - good PCM/ ESP control unit and check for proper operation. If the problem is corrected, replace PCM/ ABS or ESP control unit and go to "Verification of Vehicle Repair" procedure.

NO

Repair or replace it as necessary.

And then go to "Verification of Vehicle Repair" procedure.

FL -431

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. After testing PCM on the vehicle, use this function to reuse the PCM on the others

[EXCEPT EURO- /]

TERMINAL AND CONNECTOR INSPECTION

- 1. Many malfunctions in the electrical system are caused by poor harness and terminals. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- 2. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

Repair as necessary and go to "Verification of Vehicle Repair" procedure

NO

Go to " Power Circuit Inspection " procedure.

POWER CIRCUIT INSPECTION

- 1. Check voltage
 - شرکت دیجیتال خودر و سامانه (مسئول"OFF" IG (۱۵۵
 - 2) Disconnect vehicle speed sensor connector.
 - 3) IG "ON" and ENG "OFF"
 - 4) Measure voltage between terminal 1 of vehicle speed sensor harness connector and chassis ground.

Specification: Approx. 11.5 ~ 13V

5) Is the measured voltage within specifications?

Go to "Signal circuit inspection" procedure.

Repair open or short to ground in harness, and go to "Verification of Vehicle Repair" procedure. Especially Check the fuse related to Power for blown-off.

SIGNAL CIRCUIT INSPECTION

- Check voltage from sensor side
 - 1) IG "OFF"
 - 2) Disconnect vehicle speed sensor connector.
 - 3) IG "ON" and ENG "OFF"
 - 4) Measure voltage between terminal 3 of vehicle speed sensor harness connector and chassis ground.

WWW.DIGITALKHODRO.COM

021 62 99 92 92

FL -432 FUEL SYSTEM

Specification: Approx. 8 ~ 11.5V

5) Is the measured voltage within specifications?

YES

Go to "Check voltae from PCM side" as follows.

NO

Repair open or short to ground in harness, and go to "Verification of Vehicle Repair" procedure.

- 2. Check voltage from PCM side
 - 1) IG "OFF"
 - 2) Disconnect PCM connector and vehicle speed sensor connector.
 - 3) IG "ON" and ENG "OFF"
 - 4) Measure voltage between terminal "52" of PCM harness connector and chassis ground.

Specification: Approx. 8 ~ 11.5V

Is the measured voltage within specifications?

YES

Go to " Ground circuit inspection " procedure.

NO

Check open in harenss.

Repair or replace as necessary and then, go to "Verification of Vehicle Repair" procedure.

GROUND CIRCUIT INSPECTION

- 1. IG "OFF"
- 2. Disconnect vehicle speed sensor connector.
- 3. IG "ON" and ENG "OFF"
- 4. Measure voltage between terminal 1 of vehicle speed sensor harness connector and chassis ground.(Fig.A)
- 5. Measure voltage between terminals 1 and 2 of vehicle speed sensor harness connector. (Fig.B)

Specification : Measurement "A" - Measurement 'B' = Approx. below 200mV

6. Is the measured voltage within specifications?

YES

Substitute with a known - good vehicle speed sensor and check for proper operation. If the problem is not correctd, substitute with a known - good PCM and check for proper operation. And go to "Verification of Vehicle Repair" procedure.

NO

FL -433

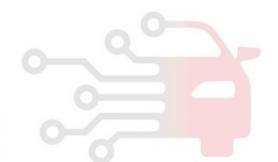
Repair open or contact resistance in harness, and go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. After testing PCM on the vehicle, use this function to reuse the PCM on the others

VERIFICATION OF VEHICLE REPAIR E13A951B

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?


System performing to specification at this time. Clear the DTC

NO

Go to the applicable troubleshooting procedure.

شرکت دیجیتال خودرو سامانه (مسئولیت محدود

اولین سامانه دیجیتال تعمیرکاران خودرو در ایران

FL -434 FUEL SYSTEM

DTC P0504 BRAKE SWITCH "A"/"B" CORRELATION

GENERAL DESCRIPTION E476E567

The Stop lamp switch is used to judge whether the acceleration system is abnormal or not. The stop lamp switch has a duplex system(signals brake test or brake light) to memorize the abnormality when the signals of depressing and releasing the brake pedal are detected simultaneously.

DTC DESCRIPTION E8E13659

Checking output signals from both Stop lamp switch when all of them are On or OFF simultaneously, if abnormal signal is detected for more than 0.5 sec., an error is recognized. And if this condition lasts for certain period, PCM sets P0504. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

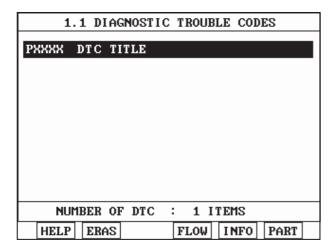
DTC DETECTING CONDITION E936EBAB


Item		Detecting Condition	Possible cause		
DTC Strategy		Comparing 2 brake signals during driving			
Enable	Case 1	Engine runningVehicle Speed Sensor is abnormal.			
Condi- tions	Case 2	 Engine running Vehicle Speed Sensor is normal and Vehicle Speed is over 20kph druing 1sec or more. 	Poor connection Open or short in Stop lamp switch		
Threshold value		The one brake signal's change duration when another signal has been changed > 0.5 sec	Faulty Stop lamp switch		
Diagnosis Time		Continuous			
MIL On Condition		2 driving cycles			

SPECIFICATION E49F2F28

Item	Brake OFF	Brake ON	
Stop Lamp	0V	Battery voltage	
Stop Lamp Switch	Battery voltage	0V	

FL -435


SCHEMATIC DIAGRAM E8F64

MONITOR DTC STATUS

ولين سامانه ديجيتال تعمير

- . Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu
 - 4) Read "DTC Status" parameter.

PXXXX DTC TITLE

1.MIL STATUS: ON/OFF

2.DTC STATUS: PRESENT/HISTORY

3.DIAG.STATUS: DIAGNOSIS FINISHED!

SGHFL7305L

FL -436 FUEL SYSTEM

5) Is "Present" Fault displayed?

Go to "Terminal and connector inspection" procedure.

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

TERMINAL AND CONNECTOR INSPECTION ED4854D

- 1. Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- 2. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

Repair as necessary and go to "Verification of Vehicle Repair" procedure

NO

Go to " Power Circuit Inspection " procedure.

POWER CIRCUIT INSPECTION EA265F67

- 1. Votage check
 - 1) IG Key "OFF".
 - 2) Disconnect the PCM connector.
 - 3) IG Key "ON" and keep the brake taking off.
 - 4) Measure the voltage between terminal 21 of PCM harness connector(C144-A) and chassis ground.
 - 5) Measure the voltage between terminal 23 of PCM harness connector(C144-A) and chassis ground .
 - 6) Keep the brake stepping on.
 - 7) Measure the voltage between terminal 21 of PCM harness connector(C144-A) and chassis ground.
 - Measure the voltage between terminal 23 of PCM harness connector(C144-A) and chassis ground.

SPECIFICATION:

Item	Brake OFF	Brake ON	
Stop Lamp	0V	Battery voltage	
Stop Lamp Switch	Battery voltage	0V	

9) Is the measured voltage within specification ?

FL -437

YES

Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage. Repair as necessary and go to "Verification of Vehicle Repair" procedure.

NO

Go to "Check open in harness" as follows.

- 2. Check open in harness
 - 1) IG Key "OFF".
 - 2) Disconnect the stop lamp switch and PCM connector.
 - 3) Measure the resistance between terminal 21 of PCM harness connector and terminal 3 of Stop lamp switch harness side.
 - 4) Measure the resistance between terminal 23 of PCM harness connector and terminal 2 of Stop lamp switch harness side.

Specification: Approx. below 1

5) Is the measured resistance within specification?

YES

Go to "Check Battery voltagen" procedure.

NO

Repair open in circuit and go to "Verification of Vehicle Repair" procedure.

- 3. Check Battery voltage
 - 1) IG Key "OFF".
 - 2) Disconnect the stop lamp switch connector.
 - 3) Measure the voltage between stop lamp switch harness connector terminal 1 and chassis ground.
 - 4) Measure the voltage between stop lamp switch harness connector terminal 4 and chassis ground.
 - 5) IG Key "ON".
 - 6) Measure the voltage between stop lamp switch harness connector terminal 1 and chassis ground.
 - 7) Measure the voltage between stop lamp switch harness connector terminal 4 and chassis ground.

SPECIFICATION:

Item	Brake OFF	Brake ON	
Stop Lamp	Battery voltage	Battery voltage	
Stop Lamp Switch	0V	Battery voltage	

8) Is the measured voltage within specification?

YES

FL -438 FUEL SYSTEM

Substitute with a known - good stop lamp switch and check for proper operation. If the problem is corrected, replace stop lamp switch and go to "Verification of Vehicle Repair" procedure.

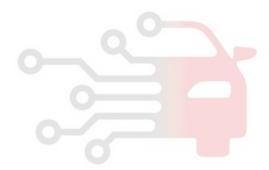
Check the fuse between battery and stop lamp switch.

Repair open or short in power circuit of stop lamp switch and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR EB8212D7

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?



System performing to specification at this time. Clear the DTC

Go to the applicable troubleshooting procedure.

اولین سامانه دیجیتال تعمیرکاران خودرو در ایران

FL -439

DTC P0506 IDLE AIR CONTROL SYSTEM-RPM LOWER THAN EXPECTED

GENERAL DESCRIPTION E94B2F43

The idle speed is controlled by the Electrical Throttle Control(ETC) System. ETC system is composed of the throttle motor to operate the throttle valve and the throttle position sensor to detect the opening angle of the throttle valve, the accelerator pedal position sensor to detect the accelerator pedal position and the one valve type throttle body. The PCM controls the throttle motor to provide the proper throttle valve opening angle for the target idle speed.

DTC DESCRIPTION E547FAB9

Checking idle RPM under detecting condition, if if the real idle speed is lower than desired idle speed by 100 RPM over 10 sec., PCM sets P0506. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION E3FC284/

Item	Possible cause	
DTC Strategy		
Enable Conditions	Normal idle conditions	
Thresh old value	 Real engine speed is lower than target engine speed by 100 RPM 	Intake system for blockage
Diagnosis Time	Continuous	
MIL On Condition	2 driving cycles	

MONITOR SCANTOOL DATA E7C25D1E

- 1. Monitor DTCs related to HO2S, MAFS, MAPS, ECTS, PCSV, Injector, CVVT items, ETC system, A/C system, or power steering system with scantool.
- 2. Are related DTCs present?

YES

Do all repairs associated with those codes before proceeding with this procedure.

Go to "System Inspection" procedure

SYSTEM INSPECTION EOACC293

- Check intake/exhaust system for blockage
 - 1) Visually/physically inspect the following items:
 - Air cleaner filter element for excessive dirt or for any foreign objects
 - Hoses of intake system for blockage
 - Throttle body inlet for damage or for any foreign objects
 - Throttle plate for carbon deposits
 - 2) Has a problem been found in any of the above areas?

YES

FL -440 FUEL SYSTEM

Repair it and go to "Verification of Vehicle Repair" procedure

Clear DTC and Test-drive under enable conditions above-mentioned. After the test, If this DTC is set, go to "Inspection & Repair" procedure. If not, troubleshooting is completed.

VERIFICATION OF VEHICLE REPAIR E3D7B637

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC

Go to the applicable troubleshooting procedure.

اولین سامانه دیجیتال تعمیرکاران خودرو در ایران

FL -441

DTC P0507 IDLE AIR CONTROL SYSTEM-RPM HIGHER THAN EXPECTED

GENERAL DESCRIPTION EA24BFC4

Refer to DTC P0506.

DTC DESCRIPTION EBAE5260

Checking idle RPM under detecting condition, if if the real idle speed is higher than desired idle speed by 200 RPM over 10 sec., PCM sets P0507. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION E3059C01

Item Detecting Condition		Possible cause
DTC Strategy	Monitor idle speed	
Enable Conditions • Normal idle conditions		
Thresh old value	Real engine speed is higher than target engine speed by 200 RPM	Intake system for air leakage
Diagnosis Time • Continuous		
MIL On Condition	2 driving cycles	

MONITOR SCANTOOL DATA EOFD7AE1.

Refer to DTC P0506.

SYSTEM INSPECTION E4EB3023

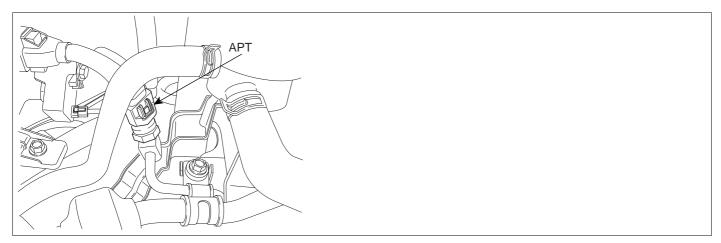
- 1. Check intake/exhaust system for blockage
 - 1) Visually/physically inspect the following items:
 - Intake system for air leakage
 - Vapor hoses for cracks or disconnection
 - 2) Has a problem been found in any of the above areas?

YES

Repair it and go to "Verification of Vehicle Repair" procedure

NO

Clear DTC and Test-drive under enable conditions above-mentioned. After the test, If this DTC is set, go to "Inspection amp;amp; Repair" procedure. If not, troubleshooting is completed.


VERIFICATION OF VEHICLE REPAIR E4932FDA

Refer to DTC P0506.

FL -442 FUEL SYSTEM

DTC P0532 A/C REFRIGERANT PRESSURE SENSOR "A" CIRCUIT LOW INPUT

COMMPONENT LOCATION E83BF023

SGHFL7331N

GENERAL DESCRIPTION

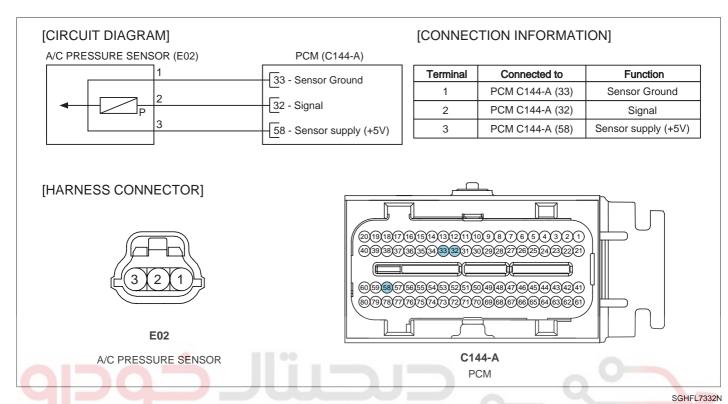
EC2AF27B

The PCM(Engine Control Module) receives pressure signal in the A/C refrigerant high pressure side from the A/C refrigerant pressure sensor. This input indicates how much load the A/C compressor is putting on the engine and is one of the factors used by the PCM in order to determine the idle air control position for the idle speed. The circuits consist of a 5V reference and a ground, both provided by the PCM, and a signal from the sensor. The signal is a voltage which is proportional to the A/C pressure from 0 to 5V. Low pressure produces a low voltage signal and high pressure a high-voltage signal.

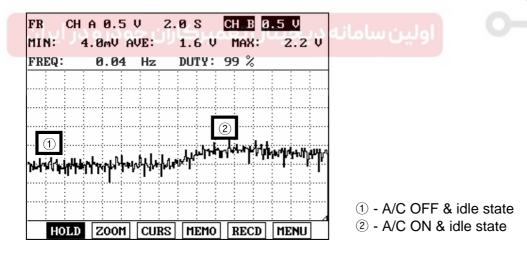
DTC DESCRIPTION EBD51233

Checking output signals from A/C pressure sensor under detecting condition, if an signal below 0.25V lasts for more than 10 sec., PCM sets P0532.

DTC DETECTING CONDITION E46D46A0


Item	Detecting Condition	Possible cause	
DTC Strategy	Detects sensor signal short to low voltage		
Enable Conditions	Engine running	Poor connection	
Thresh old value • Sensor output voltage 0.25V		Open in power circuitOpen or short to ground	
Diagnosis Time	Continuous (More than 10 seconds failure for every 20 seconds test)	in signal circuit Faulty A/C pressure sensor Faulty PCM	
MIL On Condition	DTC only (NO MIL ON)		

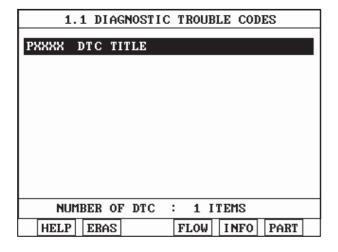
SPECIFICATION E21C5759


Pressure(psi)	14.7	128.5	242.3	356.1	469.9
Voltage(V)	0.5	1.5	2.5	3.5	4.5

FL -443

SCHEMATIC DIAGRAM EEDBE1

SIGNAL WAVEFORM AND DATA ED549388



EGRF884A

MONITOR DTC STATUS E8A15AE1

- Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu
 - 4) Read "DTC Status" parameter.

FL -444 FUEL SYSTEM

PXXXX DTC TITLE

1.MIL STATUS: ON/OFF
2.DTC STATUS: PRESENT/HISTORY
3.DIAG.STATUS: DIAGNOSIS FINISHED!

SGHFL7305L

5) Is "Present" Fault displayed?

YES

Go to "Terminal and connector inspection" procedure.

NO

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

TERMINAL AND CONNECTOR INSPECTION EB6EAB94

- 1. Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- 2. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

Repair as necessary and go to "Verification of Vehicle Repair" procedure

NO

Go to " Power Circuit Inspection " procedure.

POWER CIRCUIT INSPECTION E5088726

- 1. Key "OFF".
- 2. Disconnect the A/C pressure sensor connector.
- 3. Key "ON".
- 4. Measure the voltage between terminal 3 of A/C pressure sensor harness connector and chassis ground.

FL -445

Specification: approx. 5V

5. Is the measured voltage within specification?

Go to "Signal circuit inspection" procedure.

NO

Repair Open or Short to ground in A/C pressure sensor power circuit and go to "Verification of Vehicle Repair" procedure.

SIGNAL CIRCUIT INSPECTION ECC134EC

- Check short to ground inspection
 - 1) IG Key "OFF".
 - 2) Disconnect A/C pressure sensor and PCM connector.
 - 3) Measure the resistance between terminal 2 of A/C pressure sensor harness connector and chassis ground.

Specification: Infinite

4) Is the measured resistance within specification?

YES

Go to "Check open in harness" procedure.

NO

Repair Short to ground in A/C pressure sensor signal circuit and go to "Verification of Vehicle Repair" procedure.

- 2. Check open in harness
 - 1) IG Key "OFF".
 - 2) Disconnect A/C pressure sensor and PCM connector.
 - Measure the resistance between terminal 2 of A/C pressure sensor harness connector and terminal 32 of PCM harness connector.

Specification: Approx. below 1

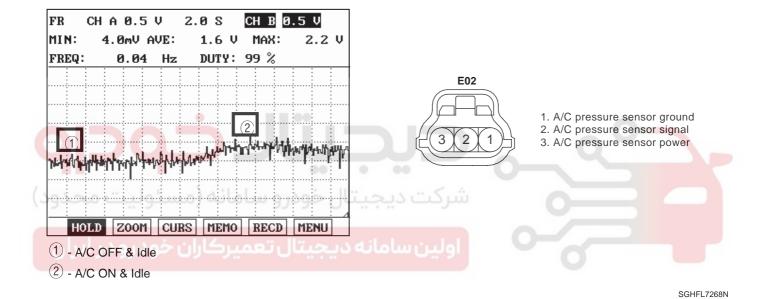
4) Is the measured resistance within specification?

YES

Go to "Component inspection" procedure.

NO

Repair Open in A/C pressure signal circuit and go to "Verification of Vehicle Repair" procedure.


FL -446 FUEL SYSTEM

COMPONENT INSPECTION EC4EA5E

- 1. A/C pressure sensor inspection
 - 1) IG Key "OFF" and connect the scantool.
 - 2) Connect the probe to A/C pressure sensor signal and select the oscilloscope in the menu.
 - 3) Check the waveform with acceleration and deceleration after engine start.

SPECIFICATION:

Pressure(psi)	14.7	128.5	242.3	356.1	469.9
Voltage(V)	0.5	1.5	2.5	3.5	4.5

4) Is the measured waveform of A/C pressure sensor normal?

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

Substitute with a known - good A/C pressure sensor and check for proper operation. If the problem is corrected, replace A/C pressure sensor and go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. After testing PCM on the vehicle, use this function before reusing the PCM

VERIFICATION OF VEHICLE REPAIR EB773C58

After a repair, it is essential to verify that the fault has been corrected.

1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode

FL -447

- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC

Go to the applicable troubleshooting procedure.

FL -448 FUEL SYSTEM

DTC P0533 A/C REFRIGERANT PRESSURE SENSOR "A" CIRCUIT HIGH INPUT

COMMPONENT LOCATION E1D2E273

Refer to DTC P0532.

GENERAL DESCRIPTION E14601F3

Refer to DTC P0532.

DTC DESCRIPTION E7085E80

Checking output signals from A/C pressure sensor under detecting condition, if an signal above 4.65V lasts for more than 10 sec., PCM sets P0533.

DTC DETECTING CONDITION EDD8FD89

Item	Detecting Condition	Possible cause		
DTC Strategy	 Detects sensor signal short to high voltage 	- 0		
Enable Conditions	• Engine running	Poor connection		
Thresh old value	Sensor output voltage > 4.65V	 Short battery in signal circuit 		
Diagnosis Time	Continuous (More than 10 seconds failure for every 20 seconds test)	 Open in ground circuit Faulty A/C pressure sensor Faulty PCM 		
MIL On Condition	DTC only (NO MIL ON)	o U		

SPECIFICATION EAA47D6C

Pressure(psi)	14.7	128.5	242.3	356.1	469.9
Voltage(V)	0.5	1.5	2.5	3.5	4.5

SCHEMATIC DIAGRAM EAA90E5C

Refer to DTC P0532.

SIGNAL WAVEFORM AND DATA EBD467B6

Refer to DTC P0532.

MONITOR DTC STATUS E753AF0A

Refer to DTC P0532.

TERMINAL AND CONNECTOR INSPECTION E7617491

Refer to DTC P0532.

FL -449

POWER CIRCUIT INSPECTION

- 1. IG Key "OFF".
- 2. Disconnect the A/C pressure sensor connector.
- 3. IG Key "ON".
- 4. Measure the voltage between terminal 3 of A/C pressure sensor harness connector and chassis ground.

Specification: approx. 5V

5. Is the measured voltage within specification?

Go to "Ground circuit inspection" procedure.

NO

Repair Open in power circuit and go to "Verification of Vehicle Repair" procedure.

GROUND CIRCUIT INSPECTION

- IG Key "OFF".
- 2. Disconnect the A/C pressure sensor connector.
- 3. IG Key "ON".
- 4. Measure the voltage between terminal 3 of A/C pressure sensor harness connector and chassis ground. (Fig A)
- Measure the voltage between terminal 3 and terminal 1 of A/C pressure sensor harness connector. (Fig B)

Specification: The Difference between "A" and "B" is below 200mV.

6. Is the measured voltage within specification?

Go to "Signal circuit inspection" procedure.

NO

Repair as necessary and go to "Verification of Vehicle Repair" procedure.

SIGNAL CIRCUIT INSPECTION E5DD2884

- 1. Voltage inspection
 - 1) IG Key "OFF".
 - 2) Disconnect the A/C pressure sensor connector.
 - 3) IG Key "ON".
 - 4) Measure the voltage between terminal 2 of A/C pressure sensor harness connector and chassis ground.

FL -450 FUEL SYSTEM

Specification: Approx. 0V

5) Is the measured voltage within specification?

YES

Go to "Component inspection" procedure.

NO

Go to "Check short to battery in harness" procedure.

- 2. Check short to battery in harness
 - 1) IG Key "OFF".
 - 2) Disconnect A/C pressure sensor connector and PCM connector.
 - 3) Measure the resistance between terminal 2 and terminal 3 of A/C pressure sensor harness connector.

Specification: Infinite

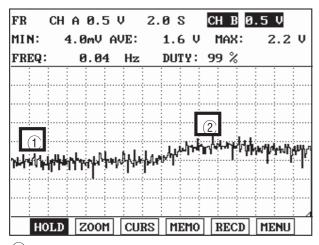
4) Is the measured resistance within specification?

YES

Go to "Component inspection" procedure.

NO

Repair Short in signal circuit and go to "Verification of Vehicle Repair" procedure.


COMPONENT INSPECTION EE80A308

- 1. A/C pressure sensor inspection
 - 1) IG Key "OFF" and connect the scantool.
 - 2) Connect the probe to A/C pressure sensor signal and select the oscilloscope in the menu.
 - 3) Check the waveform with acceleration and deceleration after engine start.

SPECIFICATION:

Pressure(psi)	14.7	128.5	242.3	356.1	469.9
Voltage(V)	0.5	1.5	2.5	3.5	4.5

FL -451

- 802 3 2 1
- 1. A/C pressure sensor ground
- 2. A/C pressure sensor signal
- 3. A/C pressure sensor power

- (1) A/C OFF & Idle
- (2) A/C ON & Idle

SGHFL7268N

4) Is the measured waveform of A/C pressure sensor normal?

YES

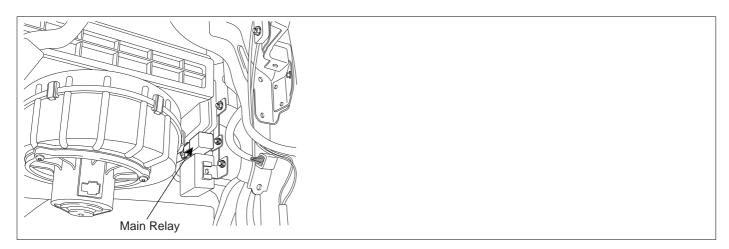
Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

NO

Substitute with a known - good A/C pressure sensor and check for proper operation. If the problem is corrected, replace A/C pressure sensor and go to "Verification of Vehicle Repair" procedure.

NOTE

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. After testing PCM on the vehicle, use this function before reusing the PCM


VERIFICATION OF VEHICLE REPAIR EDANSFEC

Refer to DTC P0532.

FL -452 FUEL SYSTEM

DTC P0562 SYSTEM VOLTAGE LOW

COMMPONENT LOCATION ECA04B7

SGHFL7333N

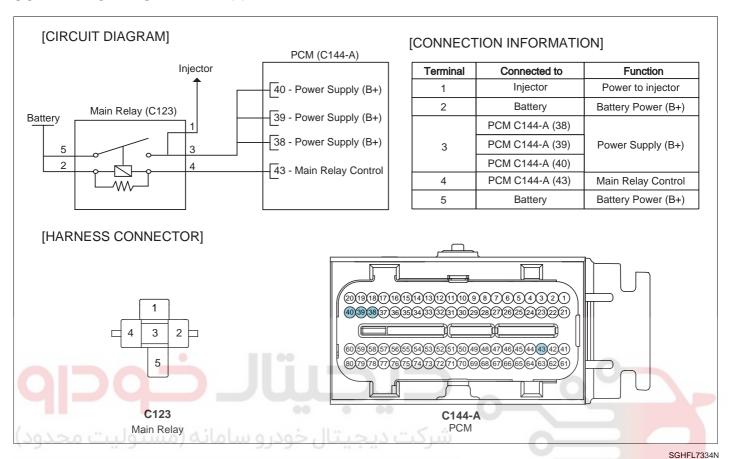
GENERAL DESCRIPTION EDD4C775

The PCM provides ground to one side of the coil of the main relay and the other side is connected to the battery. The PCM monitors battery voltage and the voltage after the main relay.

DTC DESCRIPTION EDIEEACE

If system voltage is below 11V, PCM sets P0562. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

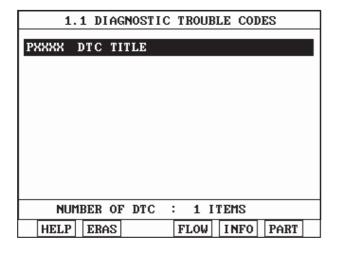
DTC DETECTING CONDITION EDBFCBDS


Item	Detecting Condition	Possible cause
DTC Strategy	Voltage too low	
Enable Conditions	Engine running11V Battery voltage 16V	Poor connectionOpen in power circuit
Thresh old value	System voltage 11V	Faulty charging systemFaulty main relay
Diagnosis Time • Continuous • Faulty PCM		1
MIL On Condition	2 driving cycles	

SPECIFICATION EAF683B2

70 ~ 120	Coil Resistance	
----------	-----------------	--

FL -453


SCHEMATIC DIAGRAM E7/

MONITOR DTC STATUS E2A6AAA4

- Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu
 - 4) Read "DTC Status" parameter.

FL -454 FUEL SYSTEM

PXXXX DTC TITLE

1.MIL STATUS: ON/OFF
2.DTC STATUS: PRESENT/HISTORY
3.DIAG.STATUS: DIAGNOSIS FINISHED!

SGHFL7305L

5) Is "Present" Fault displayed?

YES

Go to "Terminal and connector inspection" procedure.

NO

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

TERMINAL AND CONNECTOR INSPECTION E2677342

- Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- 2. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

Repair as necessary and go to "Verification of Vehicle Repair" procedure

NO

Go to " Power Circuit Inspection " procedure.

POWER CIRCUIT INSPECTION E63EF34D

- 1. Check voltage
 - 1) IG "OFF".
 - 2) Disconnect the main relay.
 - 3) IG "ON" and ENG "OFF"

FL -455

- 4) Measure the voltage between terminal 2 of main relay harness connector and chassis ground.
- 5) Measure the voltage between terminal 5 of main relay harness connector and chassis ground.

Specification: B+

6) Is the measured voltage within specification?

Go to "Check open in harness" procedure.

NO

Check the fuse between battery and main relay.

Repair Open or Short to ground in power circuit and go to "Verification of Vehicle Repair" procedure

- 2. Check open in harness
 - 1) IG "OFF".
 - Disconnect main relay and PCM connector.
 - Measure the resistance between terminal 3 of main relay harness connector and terminals 38, 39, 40 of PCM harness connector.

Specification: Approx. below 1

4) Is the measured resistance within specification?

ولین سامانه دیجیتال تعمیرکاران خودر _{YES}

Go to "Check short in harness" procedure.

NO

Repair open in harness and go to "Verification of Vehicle Repair" procedure .

- 3. Check short in harness
 - 1) IG "OFF".
 - 2) Disconnect main relay and PCM connector.
 - 3) Measure the resistance between terminal 3 of main relay harness connector and chassis ground.

Specification: Infinite

4) Is the measured resistance within specification?

YES

Go to "Control circuit inspection" procedure.

NO

Repair short in harness and go to "Verification of Vehicle Repair" procedure.

FL -456 FUEL SYSTEM

CONTROL CIRCUIT INSPECTION ED791330

- 1. Check short in harness
 - 1) IG "OFF".
 - 2) Disconnect main relay and PCM connector.
 - Measure the resistance between terminal 4 of main relay harness connector and chasses ground.

Specification: Infinite

4) Is the measured resistance within specification?

Go to "Check open in harness" procedure.

NO

- 5) Repair short in control harness and go to "Verification of Vehicle Repair" procedure.
- 2. Check open in harness
 - 1) IG "OFF".
 - 2) Disconnect main relay and PCM connector.
 - Measure the resistance between terminal 4 of main relay harness connector and terminal 43 of PCM harness connector.

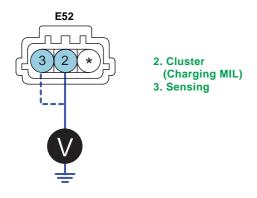
Specification: Approx. below 1

4) Is the measured resistance within specification?

YES

Go to "System inspection" procedure.

NO


Repair open in control harness and go to "Verification of Vehicle Repair" procedure.

SYSTEM INSPECTION ECD405B5

- Check Alternator circuit
 - 1) IG "OFF".
 - Disconnect alternator connector.
 - 3) IG "ON".
 - 4) Measure the voltage between terminal 2 of alternator and chassis gound.
 - 5) Measure the voltage between terminal 3 of alternator and chassis gound.

Specification: B+

FL -457

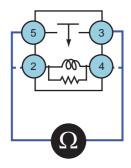
SGHFL7277N

6) Is the measured voltage within specification?

Go to "Component inspection" procedure.

In case terminal 2: Repair MIL circuit, MIL resistor or Open in circuit and go to "Verification of Vehicle Repair" procedure.

In case terminal 3: Repair the fuse between battery and Ignition switch, the fuse between Ignition switch and alternator or Open in circuit and go to "Verification of Vehicle Repair" procedure.


COMPONENT INSPECTION ECD24CA5

- 1. Check Main relay
 - 1) IG "OFF".
 - 2) Disconnect the main relay.
 - 3) Measure the resistance between terminal 2 and 4 of main relay.
 - Measure the resistance between terminal 5 and 3 of main relay.

Specification: 70 ~ 120

Terminal	Power approval	
3 ~ 5	NO	
2 ~ 4	YES (Approx. 70 ~ 120)	

FL -458 FUEL SYSTEM

SGHFL7278N

5) Is the measured resistance within specification?

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

Substitute with a known - good Main relay and check for proper operation. If the problem is corrected, replace Main relay and go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. After testing PCM on the vehicle, use this function before reusing the PCM

VERIFICATION OF VEHICLE REPAIR E220E275

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

YES

System performing to specification at this time. Clear the DTC

NO

Go to the applicable troubleshooting procedure.

FL -459

DTC P0563 SYSTEM VOLTAGE HIGH

COMMPONENT LOCATION E551C1A9

Refer to DTC P0562.

GENERAL DESCRIPTION E020E732

Refer to DTC P0562.

DTC DESCRIPTION E2384B20

If system voltage is above 16V, PCM sets P0563. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION E99533F5

Item	Detecting Condition	Possible cause
DTC Strategy	Voltage too high	
Enable Conditions	Engine running	Poor connectionShort in circuit
Thresh old value	System voltage 16V	 Faulty charging system
Diagnosis Time	Continuous	Faulty main relay Faulty PCM
MIL On Condition	2 driving cycles	

SPECIFICATION E811EA1E

Coil Resistance	70 ~ 120	2

SCHEMATIC DIAGRAM E3EE16BC

Refer to DTC P0562.

MONITOR DTC STATUS E84B5358

Refer to DTC P0562.

TERMINAL AND CONNECTOR INSPECTION E96D8CS

Refer to DTC P0562.

POWER CIRCUIT INSPECTION EEB49AC7

- 1. Power circuit inspection
 - 1) IG "OFF".
 - 2) Disconnect the main relay connector.
 - 3) IG "ON" and ENG "OFF".

FL -460 **FUEL SYSTEM**

- MeMeasure the voltage between terminal 2 of main relay harness connector and chassis ground.
- Measure the voltage between terminal 5 of main relay harness connector and chassis ground.

Specification: B+

Is the measured voltage within specification?

Go to "Check short in harness" procedure.

NO

Repair Short in power harness and go to "Verification of Vehicle Repair" procedure.

- Check short in harness
 - IG "ON". 1)
 - Measure the voltage between terminal 38, 39, 40 of PCM harness connector(C144-A) and chassis ground. 2)

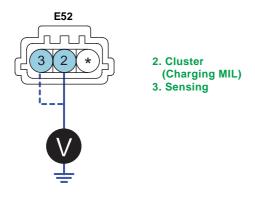
Specification: B+

Is the measured voltage within specification?

YES

Go to "System inspection" procedure.

NO


Repair short in power harness and go to "Verification of Vehicle Repair" procedure .

SYSTEM INSPECTION E88D37C8

- Check Alternator circuit
 - IG "OFF". 1)
 - Disconnect alternator connector.
 - IG "ON" and ENG "OFF" 3)
 - 4) Measure the voltage between terminal 2 of alternator and chassis gound.
 - Measure the voltage between terminal 3 of alternator and chassis gound.

Specification: B+

FL -461

SGHFL7277N

6) Is the measured voltage within specification?

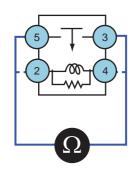
Go to "Component inspection" procedure.

Repair short in Sensing circuit or MIL circuit and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION

1. Check Main relay

1) IG "OFF".


2) Disconnect the main relay.

3) Measure the resistance between terminal 2 and 4 of main relay.

4) Measure the resistance between terminal 5 and 3 of main relay.

Specification: 70 ~ 120

Terminal	Power approval	
3 ~ 5	NO	
2 ~ 4	YES (Approx. 70 ~ 120)	

SGHFL7278N

5) Is the measured resistance within specification?

FL -462 FUEL SYSTEM

Go to "Check Alternator" procedure.

Substitute with a known - good Main relay and check for proper operation. If the problem is corrected, replace Main relay and go to "Verification of Vehicle Repair" procedure.

- 2. Check Alternator
 - 1) IG "OFF".
 - 2) Check the tension of the belt.
 - 3) Check Battery terminal and Alternator B+ terminal for looseness, corrosion or damage.
 - 4) Engine "ON".
 - 5) Operate electric equipments (Head lamp, Hot wire, etc).
 - 6) accelerate engine to 2000 RPM and measure the battery voltage.

Specification: Approx. 12.5V ~ 14.5V

Is the measured voltage within specification?

YES

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

NO

Substitute with a known - good Alternator and check for proper operation. If the problem is corrected, replace Alternator and go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. After testing PCM on the vehicle, use this function before reusing the PCM

VERIFICATION OF VEHICLE REPAIR E2EB60F3

Refer to DTC P0562.

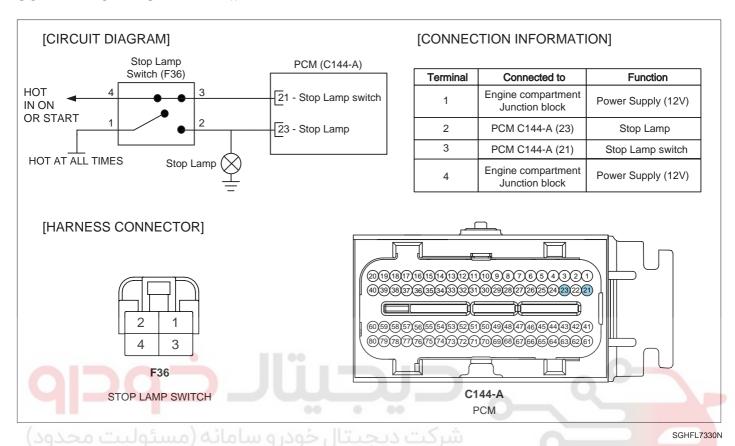
FL -463

DTC P0571 BRAKE SWITCH "A" CIRCUIT

GENERAL DESCRIPTION E20BD3C6

The Stop lamp switch is used to judge whether the acceleration system is abnormal or not. The stop lamp switch has a duplex system(signals brake test or brake light) to memorize the abnormality when the signals of depressing and releasing the brake pedal are detected simultaneously.

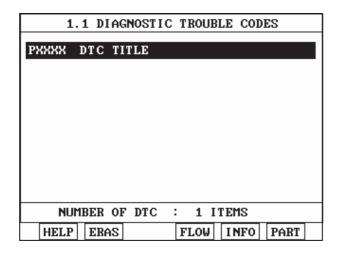
DTC DESCRIPTION E1D944BB


Checking input signals from stop lamp switch under detecting condition, if the operation state of stop lamp switch does not change for more than 3 sec., PCM sets P0571. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION E295E531

Item	Detecting Condition	Possible cause
DTC Strategy	 PCM detects stop lamp input signal when vehicle stops. 	
Enable onditions	 Engine running Vehicle speed signal is normal. Vehicle speed > 20kph (during 1sec or more) 	Poor connection
Threshold value	 Vehicle speed 3kph Vehicle acceleration -6kph/s Stop lamp "OFF" and not changing of stop lamp signal for more 3 sec. 	Open or short to ground in signal circuit Faulty PCM
Diagnosis Time	Continuous	
MIL On Condition	2 driving cycles	T O

FL -464 FUEL SYSTEM


SCHEMATIC DIAGRAM EB28

MONITOR DTC STATUS E36E12B6

Check DTC Status

- 1) Connect scantool to Data Link Connector(DLC).
- 2) IG "ON".
- 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu
- 4) Read "DTC Status" parameter.

PXXXX DTC TITLE

1.MIL STATUS: ON/OFF

2.DTC STATUS: PRESENT/HISTORY

3.DIAG.STATUS: DIAGNOSIS FINISHED!

SGHFL7305L

FL -465

5) Is "Present" Fault displayed?

Go to "Terminal and connector inspection" procedure.

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

TERMINAL AND CONNECTOR INSPECTION ETAC2CC

- 1. Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- 2. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

Repair as necessary and go to "Verification of Vehicle Repair" procedure

NO

Go to " Power Circuit Inspection " procedure.

POWER CIRCUIT INSPECTION E2995144

- 1. Check voltage
 - 1) IG "OFF".
 - 2) Disconnect the PCM connector.
 - 3) IG "ON" and ENG "OFF"
 - 4) Brake OFF: Measure the voltage between terminal 23 of PCM harness connector(C144-A) and chassis ground.
 - 5) Brake ON: Measure the voltage between terminal 23 of PCM harness connector(C144-A) and chassis ground

SPECIFICATION:

Item	Brake OFF	Brake ON
Stop Lamp	0V	Battery voltage
Stop Lamp Switch	Battery voltage	0V

6) Is the measured voltage within specification?

Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage. Repair as necessary and go to "Verification of Vehicle Repair" procedure.

FL -466 FUEL SYSTEM

Go to "Check open in harness" as follows.

- Check open in harness
 - 1) IG "OFF".
 - 2) Disconnect the brake switch and PCM connector.
 - 3) Measure the resistance between terminal 23 of PCM harness connector and terminal 2 of Stop lamp switch harness connector.

Specification: Approx. below 1

4) Is the measured resistance within specification?

Go to "Check Battery voltage" as follows.

NO

Repair open in circuit and go to "Verification of Vehicle Repair" procedure.

- 3. Check Battery voltage
 - 1) IG Key "OFF".
 - Disconnect the brake switch connector.
 - Measure the voltage between stop lamp switch harness connector terminal 1 and chassis ground.
 - 4) Measure the voltage between stop lamp switch harness connector terminal 4 and chassis ground.
 - 5) IG Key "ON".
 - Measure the voltage between stop lamp switch harness connector terminal 1 and chassis ground.
 - 7) Measure the voltage between stop lamp switch harness connector terminal 4 and chassis ground.

SPECIFICATION:

Item	Brake OFF	Brake ON
Stop Lamp	Battery voltage	Battery voltage
Stop Lamp Switch	0V	Battery voltage

8) Is the measured voltage within specification?

Substitute with a known - good stop lamp switch and check for proper operation. If the problem is corrected, replace stop lamp switch and go to "Verification of Vehicle Repair" procedure.

NO

Check the fuse between battery and stop lamp switch.

Repair open or short in power harness of stop lamp switch and go to "Verification of Vehicle Repair" procedure.

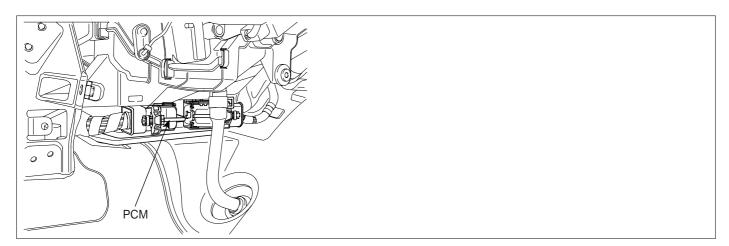
FL -467

VERIFICATION OF VEHICLE REPAIR E8D5D55

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC


Go to the applicable troubleshooting procedure.

FL -468 FUEL SYSTEM

DTC P0601 EEPROM-CHECK SUM ERROR

COMPONENT LOCATION E90D156

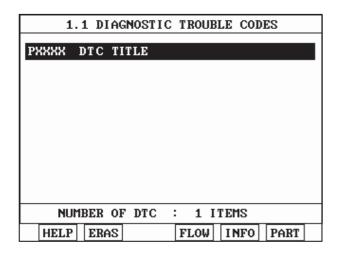
SGHFL7335N

GENERAL DESCRIPTION E8822DD1

A malfunction is detected by using a checksum technique for verifying data. The digital data is composed of zeros and ones. A checksum is the total of all ones in a string of data. By comparing the checksum value with a stored value, a malfunction can be detected.

DTC DESCRIPTION EC4DE08F

If real checksum does not accord with memory checksum, PCM sets P0601 and MIL(Malfunction Indication Lamp) turns on.


DTC DETECTING CONDITION E990224F

Item	Detecting Condition	Possible cause
DTC Strategy	Checksum check	
Enable onditions	• -	
Threshold value	Discordance between the real checksum and the memorized checksum	Faulty PCM
Diagnosis Time	• -	
MIL On Condition	1 driving cycle	

MONITOR DTC STATUS E74A7E4B

- 1. Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu
 - 4) Read "DTC Status" parameter.

FL -469

PXXXX DTC TITLE

1.MIL STATUS: ON/OFF
2.DTC STATUS: PRESENT/HISTORY
3.DIAG.STATUS: DIAGNOSIS FINISHED!

SGHFL7305L

5) Is "Present" Fault displayed?

YES

Go to "Terminal and connector inspection" procedure.

NO

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

TERMINAL AND CONNECTOR INSPECTION EBF73C9E

- Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- 2. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

Repair as necessary and go to "Verification of Vehicle Repair" procedure

NO

Substitute with a known-good PCM and check for proper operation. If the problem is corrected,replace PCM and then go to "Verification of Vehicle Repair" procedure.

NOTE

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. After testing PCM on the vehicle, use this function before reusing the PCM

VERIFICATION OF VEHICLE REPAIR EE7A7C7C

After a repair, it is essential to verify that the fault has been corrected.

FL -470 FUEL SYSTEM

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC

NO

Go to the applicable troubleshooting procedure.

FL -471

DTC P0602 EEPROM-PROGRAMING ERROR

COMPONENT LOCATION E0311F59

Refer to DTC P0601.

GENERAL DESCRIPTION E8FF5A32

Refer to DTC P0601.

DTC DESCRIPTION E6143E0D

If CPU software version does not accord with main CPU, PCM sets P0602.

DTC DETECTING CONDITION E940CEDA

Item	Detecting Condition	Possible cause
DTC Strategy	Check internal CPU	
Enable onditions	• -	
Threshold value	 The version discordance among PCU S/W or Calibration 	• Faulty PCM
Diagnosis Time	Continuous	
MIL On Condition	1 driving cycle	
بتوليت محدود)	سرخت دیجینال خودرو سامانه رمس	

MONITOR DTC STATUS EF221B61

Refer to DTC P0601.

TERMINAL AND CONNECTOR INSPECTION EA18FD3D

Refer to DTC P0601.


VERIFICATION OF VEHICLE REPAIR E5E7CAOC

Refer to DTC P0601.

FL -472 FUEL SYSTEM

DTC P0604 INTERNAL CONTROL MODULE RANDOM ACCESS MEMORY (RAM) ERROR

COMPONENT LOCATION E4931C7

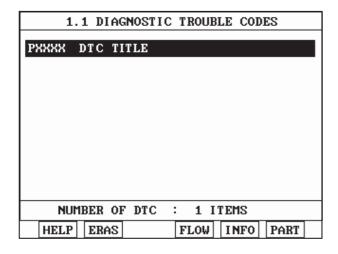
SGHFL7335N

GENERAL DESCRIPTION ECDF2322

A malfunction is detected by using a checksum technique for verifying data. The digital data is composed of zeros and ones. A checksum is the total of all ones in a string of data. By comparing the checksum value with a stored value, a malfunction can be detected.

DTC DESCRIPTION E2515DD5

If the RAM in PCM has errors, PCM sets P0604 and MIL(Malfunction Indication Lamp) turns on.


DTC DETECTING CONDITION E62CF3DB

Item	Detecting Condition	Possible cause
DTC Strategy	Check internal CPU	
Enable onditions	• -	
Threshold value	RAM has errors.	Faulty PCM
Diagnosis Time	• -	
MIL On Condition	1 driving cycle	

MONITOR DTC STATUS E53F6FF1

- 1. Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu
 - Read "DTC Status" parameter.

FL -473

PXXXX DTC TITLE

1.MIL STATUS: ON/OFF
2.DTC STATUS: PRESENT/HISTORY
3.DIAG.STATUS: DIAGNOSIS FINISHED!

SGHFL7305L

5) Is "Present" Fault displayed?

YES

Go to "Terminal and connector inspection" procedure.

NO

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

TERMINAL AND CONNECTOR INSPECTION E13FA521

- Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- 2. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

Repair as necessary and go to "Verification of Vehicle Repair" procedure

NO

Substitute with a known-good PCM and check for proper operation. If the problem is corrected,replace PCM and then go to "Verification of Vehicle Repair" procedure.

NOTE

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. After testing PCM on the vehicle, use this function before reusing the PCM

VERIFICATION OF VEHICLE REPAIR ED097896

After a repair, it is essential to verify that the fault has been corrected.

FL -474 FUEL SYSTEM

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC

NO

Go to the applicable troubleshooting procedure.

FL -475

DTC P0606 ECM/PCM PROCESSOR(ECM-SELF TEST FAILED)

COMPONENT LOCATION EE107275

Refer to DTC P0604.

GENERAL DESCRIPTION EAC618DC

Refer to DTC P0604.

DTC DESCRIPTION E86DC756

Checking PCM under detecting condition, if internal error is detected, PCM sets P0606. And MIL(Malfunction Indication Lamp) turns on.

DTC DETECTING CONDITION E7919731

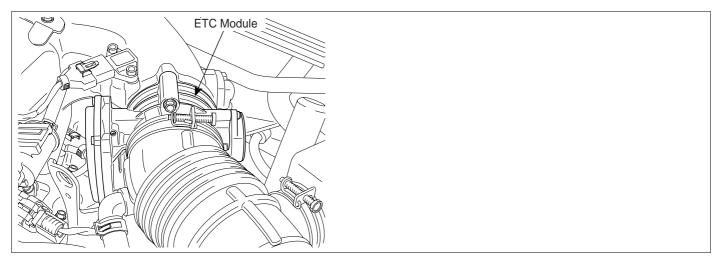
Item	Detecting Condition	Possible cause
DTC Strategy	Check PCM internal error	
Enable onditions	• 7V Battery voltage 20V	
Threshold value	PCM internal error (A/D unit error)	Faulty PCM
Diagnosis Time	Continuous	
MIL On Condition	1 driving cycle	

MONITOR DTC STATUS EAF8EFA4

Refer to DTC P0604.

TERMINAL AND CONNECTOR INSPECTION ED317A0F

Refer to DTC P0604.


VERIFICATION OF VEHICLE REPAIR E88AAD15

Refer to DTC P0604.

FL -476 FUEL SYSTEM

DTC P0638 THROTTLE ACTUATOR CONTROL RANGE/PERFORMANCE

COMPONENT LOCATION E5132C9F

SGHFL7316N

GENERAL DESCRIPTION

E75577BB

The Electronic Throttle Control(ETC) system is made of the components throttle body, Throttle Position Sensor(TPS)1 & 2 and Accelerator Position Sensor(APS) 1 & 2. The throttle body contains the actuator, the throttle plate and the throttle position sensor (potentiometer), which are integrated in one housing. The actuator consists of a DC motor with a two-stage gear. The opening angle of the throttle valve is detected by the throttle position sensor which is mounted on the throttle body. And it provides feedback to the PCM to control the throttle motor in order to control the throttle valve opening angle properly in response to the driving condition.

DTC DESCRIPTION F308F324

Checking output signals from TPS under detecting condition, if the difference between real and target throttle position is above the specified value, PCM sets P0638 and then MIL(Malfunction Indication Lamp) turns on.

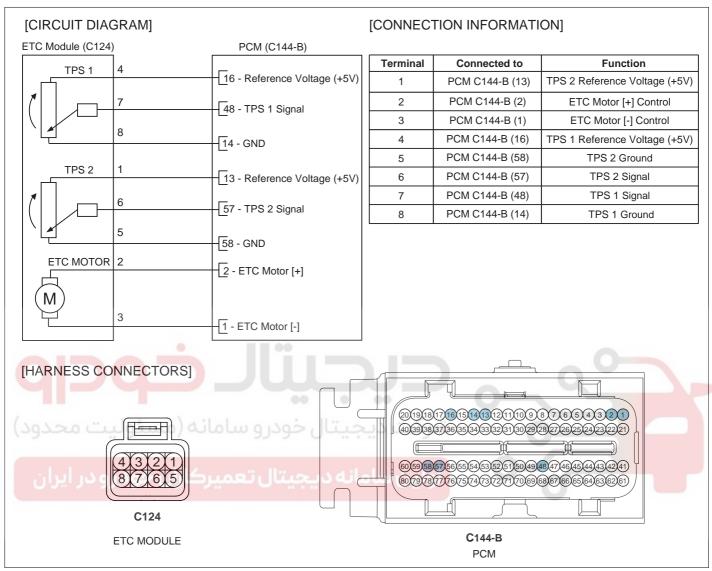
DTC DETECTING CONDITION E13D0C05

Item Detecting Condition		Possible cause	
DTC S	Strategy	Monitor the throttle position	
Enable Co	nditions	Engine running Battery voltage 5V	
Thresh	Case1	 The difference between the real ETS motor & TPS value and the target ETS motor & TPS value is over 4.5°. 	Throttle stuckOpen in motor circuit
old value	Case2	 When real Throttle position is below 36°, (the real throttle position - the target throttle position) < - 4.5° 	Faulty motorFaulty PCM
	Case3	 (the real throttle position - the target throttle position) < - 18° 	
Diagnos	sis Time	Continuous	
MIL On 0	Condition	1 driving cycle	

FL -477

If Main relay has a fault(ex. Open) while the engine is running, the DTCs,P0638/P0685/P1295/P2106, can happen at the same time.

< DTC Name >


- P0638 Throttle Actuator Control Range/Performance(Bank 1)
- P0685 PCM/PCM Power Relay Control Circuit /Open
- P1295 Throttle Actuator Control System Power Management
- P2106 Throttle Actuator Control System Forced Limited Power

SPECIFICATION EED25AF1

Through an anima (°)	Output voltage (V) [Vref = 5.0V]	
Throttle opening ($^{\circ}$)	TPS1	TPS2
0°	0.0V	5.0V
10°	0.5V	4.5V
20°	0.9V	4.1V
30°	1.4V	3.6V
40°	1.8V	3.2V
50°	2.3V	2.7V
60°	2.7V	2.3V
70°	3.2V	1.8V
80°	3.6V	1.4V
90°	4.1V	0.9V
100°	4.5V	0.5V
110°	5.0V	0.0V

FL -478 FUEL SYSTEM

SCHEMATIC DIAGRAM E521A824

UFBG236A

FL -479

SIGNAL WAVEFORM AND DATA E4FC4FCA

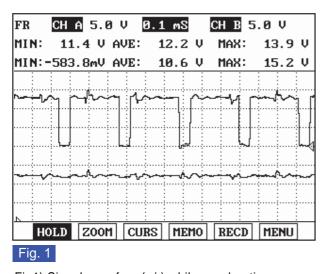
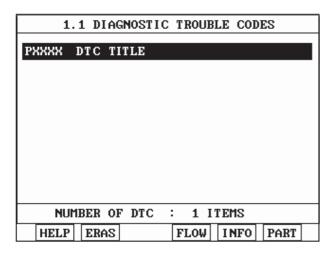


Fig1) Signal waveform(+/-) while accelerating


SBLFL7921N

MONITOR DTC STATUS

- Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).

E625F6E9

- 2) IG "ON".
 - 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu
 - 4) Read "DTC Status" parameter.

PXXXX DTC TITLE

1.MIL STATUS: ON/OFF
2.DTC STATUS: PRESENT/HISTORY
3.DIAG.STATUS: DIAGNOSIS FINISHED!

SGHFL7305L

5) Is "Present" Fault displayed?

YES

Go to "Terminal and connector inspection" procedure.

NO

FL -480 FUEL SYSTEM

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

TERMINAL AND CONNECTOR INSPECTION E7B75E3

- 1. Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

Repair as necessary and go to "Verification of Vehicle Repair" procedure

Go to " Control Circuit Inspection " procedure.

CONTROL CIRCUIT INSPECTION

E06F2C06

- Check voltage
 - 1) IG "OFF"
 - 2) Disconnect ETS motor & TPS connector.
 - 3) IG "ON" and ENG "OFF"
 - 4) Measure the voltage between terminal 2,3 of ETS motor & TPS harness connector and chassis ground.

Specification: Approx. 12V

5) Is the measured voltage within specification?

Go to "Component inspection" procedure.

Go to "Check open in harness" as follows.

- 2. Check open in harness
 - 1) IG "OFF"
 - 2) Disconnect ETS motor & TPS connector and PCM connector.
 - 3) Measure the resistance between terminal 2 of ETS motor & TPS harness connector and terminal 2 of PCM harness connector(C144-A).
 - 4) Measure the resistance between terminal 3 of ETS motor & TPS harness connector and terminal 1 of PCM harness connector(C144-A).

FL -481

Specification: Approx. below 1

5) Is the measured resistance within specification?

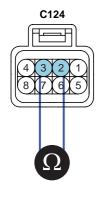
Go to "Component inspection" procedure.

Repair Open in motor harness and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION E5CD48CF

- 1. Check for sticking throttle valve
 - 1) IG "OFF".
 - 2) Disconnect the air hose between throttle body and air mass flow sensor.
 - 3) Check for sticking throttle valve.
 - 4) Is the throttle valve normal?

YES


Go to "Check ETS motor resistance" as follows.

NO WAS CHILD OF THE TAR IN

Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

- 2. Check ETS motor resistance
 - 1) IG "OFF".
 - 2) Disconnect ETS motor & TPS connector.
 - 3) Measure the resistance between terminal 2 and 3 of ETS motor & TPS connector(component side).

Specification: Approx. 1.275 ~ 1.725 @ 23 (73.4)

- 1. TPS2 power
- 2. ETS motor control A(+)
- 3. ETS motor control B(-)
- 4. TPS1 power
- 5. TPS2 ground
- 6. TPS2 signal
- 7. TPS2 signal7. TPS1 signal
- 8. TPS1 ground

4) Is the measured resistance within specification?

SBLF26643L

FL -482 FUEL SYSTEM

YES

Go to "ETC motor actuation test" procedure.

NO

Substitute with a known - good ETC motor and check for proper operation. If the problem is corrected, replace ETC motor and go to "Verification of Vehicle Repair" procedure.

Procedure of ETS Initialization

- 1. Erase the trouble codes on PCM
- 2. Turn the ignition key off and keep this condition until the main relay is turned off.(10 sec)
- 3. Turn ignition key on more than 1second to record the throttle motor position on the EEPROM
- 3. ETC motor actuation test
 - 1) IG "OFF".
 - 2) Connect ETS motor & TPS connector.
 - 3) After IG "ON", execute the "ETC motor actuation test" by Scantool.

EGRF926A

4) Does the "ETC motor actuation test" execute normally?

YES

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

NO

Substitute with a known - good ETC motor and check for proper operation. If the problem is corrected, replace ETC motor and go to "Verification of Vehicle Repair" procedure.

Procedure of ETS Initialization

- 1. Erase the trouble codes on PCM
- 2. Turn the ignition key off and keep this condition until the main relay is turned off.(10 sec)
- 3. Turn ignition key on more than 1second to record the throttle motor position on the EEPROM

VERIFICATION OF VEHICLE REPAIR E4BD5074

After a repair, it is essential to verify that the fault has been corrected.

FL -483

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC

NO

Go to the applicable troubleshooting procedure.

FL -484 FUEL SYSTEM

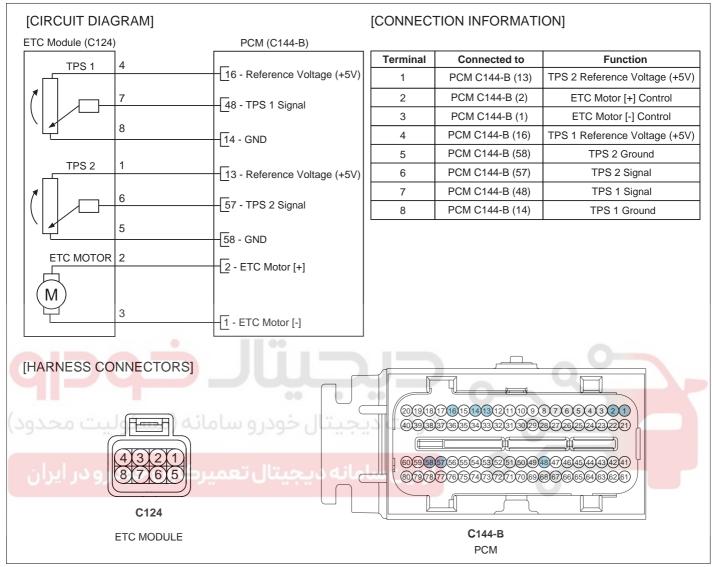
DTC P0641 SENSOR REFERENCE VOLTAGE "A" CIRCUIT OPEN

GENERAL DESCRIPTION EF58D287

The PCM provides a 5volt reference voltage to Throttle Position Sensor 1(TPS1). The PCM monitors reference voltage deviation from the power supply circuit of the sensors

DTC DESCRIPTION E6E5781D

Checking the voltage from sensor power supply every 1.87 sec. under detecting condition, if the value within detecting condition lasts for more than 0.2 sec., PCM sets P0641. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

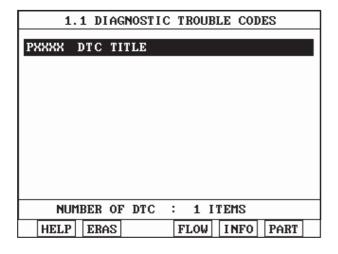

DTC DETECTING CONDITION E108BE4C

Item	Detecting Condition	Possible cause
DTC Strategy	Sensor reference voltage check	
Enable Conditions	• IG "ON"	
Threshold value	Sensor supply power 4.5V or 5.5V	Short in sensor power
Diagnosis Time	Continuous (More than 0.2 seconds failure for every 1.87 seconds test)	supply line • Faulty PCM
MIL On Condition	2 driving cycle	
شرکت دیجیتال خودر و سامانه (مسئولیت محدود)		

ولین سامانه دیجیتال تعمیرکاران خودرو در ایران

FL -485

SCHEMATIC DIAGRAM E81DEA3



UFBG236A

MONITOR DTC STATUS E73EE665

- 1. Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu
 - 4) Read "DTC Status" parameter.

FL -486 FUEL SYSTEM

PXXXX DTC TITLE

1.MIL STATUS: ON/OFF
2.DTC STATUS: PRESENT/HISTORY
3.DIAG.STATUS: DIAGNOSIS FINISHED!

SGHFL7305L

5) Is "Present" Fault displayed?

YES

Go to "Terminal and connector inspection" procedure.

NO

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

TERMINAL AND CONNECTOR INSPECTION E89F77B3

- Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- 2. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

Repair as necessary and go to "Verification of Vehicle Repair" procedure

NO

Go to " Power Circuit Inspection " procedure.

POWER CIRCUIT INSPECTION E85DE660

- 1. Check voltage
 - 1) IG "OFF".
 - 2) Disconnect TPS connector.
 - 3) IG "ON" and ENG "OFF"

FL -487

4) Measure the voltage between terminal 4 of TPS harness connector and chassis ground.

Specification: Approx. 5V

5) Is the measured voltage within specification?

Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage. Repair as necessary and go to "Verification of Vehicle Repair" procedure.

NO

Go to "Check short in power harness" as follows.

- 2. Check short in power harness
 - 1) IG "OFF".
 - Disconnect TPS connector and PCM connector.
 - Measure the resistance between terminal 4 and 2 of TPS harness connector.
 - 4) Measure the resistance between terminal 4 and 3 of TPS harness connector.
 - 5) Measure the resistance between terminal 4 and 5 of TPS harness connector.
 - 6) Measure the resistance between terminal 4 and 8 of TPS harness connector.

Specification: Infinite

لین سامانه دیجیتال تعمیرکاران خودرو در ایران

7) Is the measured resistance within specification?

YES

Substitute with a known - good PCM and check for proper operation.

If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

NO

Repair Short in power circuit and go to "Verification of Vehicle Repair" procedure.

Procedure of ETS Initialization

- 1. Erase the trouble codes on PCM
- 2. Turn the ignition key off and keep this condition until the main relay is turned off.(10 sec)
- 3. Turn ignition key on more than 1second to record the throttle motor position on the EEPROM

VERIFICATION OF VEHICLE REPAIR E9022761

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter

FL -488 FUEL SYSTEM

4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC

Go to the applicable troubleshooting procedure.

FL -489

DTC P0646 A/C CLUTCH RELAY CONTROL CIRCUIT LOW

GENERAL DESCRIPTION E3229CBD

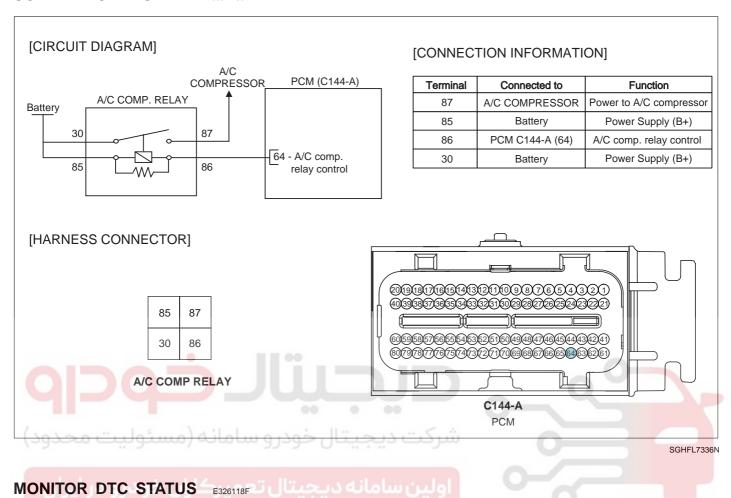
The A/C clutch relay is activated if the A/C switch is operated while the blower is running and system operation is enabled by the PCM. When A/C is requested, the Engine Control Module(PCM) provides a ground path to the A/C clutch relay control circuit. When the relay circuit is grounded, the A/C clutch relay is energized. The PCM delays grounding the relay circuit for a short time, so the PCM can adjust the engine idle speed for the additional load. The PCM will temporarily de-energized the A/C clutch relay for one or more of the following conditions:

- Full acceleration when the throttle is at WOT.(Wide Open Throttle)
- Risk of overheating: Engine coolant temp. exceeds threshold value
- A/C system pressure exceeds threshold value
- Engine starting

DTC DESCRIPTION E59045C6

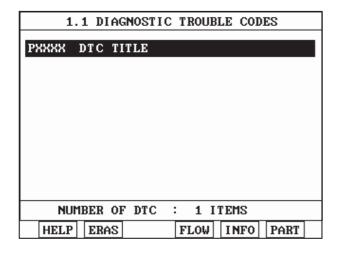
PCM monitors voltage through A/C compressor relay. Checking voltage every 10 sec. under detecting condition, if the voltage lower than the specified value is detected for more than 5 sec., PCM sets P0646.

DTC DETECTING CONDITION E071EA8A


Item	Detecting Condition	Possible cause
DTC Strategy	Detects circuit short to low voltage	0
Enable Conditions	 After 0.5 sec under conditions below No DTC exists Engine running 11V Battery voltage 16V 	Poor connectionOpen or short to ground
Threshold value	Open or short to ground	in A/C relay circuit Faulty A/C relay
Diagnosis Time	 Continuous (More than 5 seconds failure for every 10 seconds test) 	Faulty PCM
MIL On Condition	DTC only (NO MIL ON)	

SPECIFICATION E1024500

Coil Resistance	
70 ~ 120	


FL -490 FUEL SYSTEM

SCHEMATIC DIAGRAM E635DE93

- Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu
 - 4) Read "DTC Status" parameter.

FL -491

PXXXX DTC TITLE

1.MIL STATUS: ON/OFF
2.DTC STATUS: PRESENT/HISTORY
3.DIAG.STATUS: DIAGNOSIS FINISHED!

SGHFL7305L

5) Is "Present" Fault displayed?

YES

Go to "Terminal and connector inspection" procedure.

NO

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

TERMINAL AND CONNECTOR INSPECTION E62B9487

- 1. Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- 2. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

Repair as necessary and go to "Verification of Vehicle Repair" procedure

NO

Go to " Power Circuit Inspection " procedure.

POWER CIRCUIT INSPECTION E6213D7A

- 1. Check voltage
 - 1) IG "OFF".
 - 2) Disconnect A/C relay.
 - 3) IG "ON" and ENG "OFF"

FL -492 FUEL SYSTEM

- 4) Measure the voltage between terminal 30 of A/C relay harness connector and chassis ground.
- 5) Measure the voltage between terminal 85 of A/C relay harness connector and chassis ground.

Specification: B+

6) Is the measured voltage normal?

Go to "Control circuit inspection" procedure.

NO

Check the fuse between Battery and A/C relay.

Check Chassis ground for looseness.

Repair Open or Short to ground in power circuit and go to "Verification of Vehicle Repair" procedure.

CONTROL CIRCUIT INSPECTION E94

- Check short in harness
 - 1) IG "OFF".
 - 2) Disconnect A/C relay and PCM connector.
 - 3) Measure the resistance between terminal 86 of A/C relay harness connector and chassis ground.

Specification: Infinite

4) Is the measured resistance within specification?

YES

Go to "Check open in harness" as follows.

NO

Repair Short in Coil control harness and go to "Verification of Vehicle Repair" procedure.

- Check open in harness
 - 1) IG "OFF".
 - 2) Disconnect A/C relay and PCM connector.
 - 3) Measure the resistance between terminal 86 of A/C relay harness connector and terminal 64 of PCM harness connector.

Specification: Approx. below 1

4) Is the measured resistance within specification?

YES

Go to "Component inspection" procedure.

FL -493

Repair Open in Coil control harness and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION E9045A60

- 1. Check A/C relay
 - 1) IG "OFF".
 - 2) Disconnect A/C relay.
 - 3) Measure the resistance between terminal 30 and 87 of A/C relay.
 - 4) Measure the resistance between terminal 85 and 86 of A/C relay.

Terminal	Power approval
30~87	NO
85~86	YES (ABOUT 70 ~ 120)

SGHFL7285N

5) Is the measured resistance within specification?

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

Substitute with a known - good A/C relay and check for proper operation. If the problem is corrected, replace A/C relay and go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. After testing PCM on the vehicle, use this function before reusing the PCM

VERIFICATION OF VEHICLE REPAIR EBA20D1B

After a repair, it is essential to verify that the fault has been corrected.

1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode

FL -494 FUEL SYSTEM

2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions

- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC

NO

Go to the applicable troubleshooting procedure.

FL -495

DTC P0647 A/C CLUTCH RELAY CONTROL CIRCUIT HIGH

GENERAL DESCRIPTION ED58790

Refer to DTC P0646.

DTC DESCRIPTION E8B388DC

PCM monitors voltage through A/C compressor relay. Checking voltage every 10 sec. under detecting condition, if the voltage higher than the specified value is detected for more than 5 sec., PCM sets P0647.

DTC DETECTING CONDITION E10BB9AB

Item	Detecting Condition	Possible cause
DTC Strategy	Detects circuit short to high voltage	
Enable Conditions	 After 0.5 sec under conditions below No DTC exists Engine running 11V Battery voltage 16V 	Poor connectionShort to power in A/C
Threshold value	Short to power	relay circuit Faulty A/C relay
Diagnosis Time	Continuous (More than 5 seconds failure for every 10 seconds test)	• Faulty PCM
MIL On Condition	DTC only (NO MIL ON)	

SPECIFICATION فالمانية لا يحمينا التعمير كالمانية للمانية للمانية

Coil Resistance	
70 ~ 120	

SCHEMATIC DIAGRAM E393DFDE

Refer to DTC P0646.

MONITOR DTC STATUS EF30088B

Refer to DTC P0646.

TERMINAL AND CONNECTOR INSPECTION EB57409C

Refer to DTC P0646.

POWER CIRCUIT INSPECTION EF4C78E1

- 1. Check voltage
 - 1) IG "OFF".
 - 2) Disconnect A/C relay.

FL -496 FUEL SYSTEM

- 3) IG "ON" and ENG "OFF".
- 4) Measure the voltage between terminal 30 of A/C relay harness connector and chassis ground.
- 5) Measure the voltage between terminal 85 of A/C relay harness connector and chassis ground.

Specification: B+

6) Is the measured voltage normal?

Go to "Control circuit inspection" procedure.

NO

Check the fuse between Battery and A/C relay.

Check Chassis ground for looseness.

Repair open or short to ground in power harness and go to "Verification of Vehicle Repair" procedure.

CONTROL CIRCUIT INSPECTION |

- Check short in harness
 - 1) IG "ON".
 - 2) Disconnect A/C relay.
 - Measure the voltage between terminal 86 of A/C relay harness connector and chassis ground.

Specification: Approx. 0V

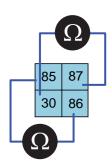
4) Is the measured voltage within specification?

YES

Go to "Component inspection" procedure.

NO

Repair Short in Coil control harness and go to "Verification of Vehicle Repair" procedure.


COMPONENT INSPECTION EOBC7ECE

- 1. Check A/C relay
 - 1) IG "OFF".
 - 2) Disconnect A/C relay.
 - 3) Measure the resistance between terminal 30 and 87 of A/C relay.
 - 4) Measure the resistance between terminal 85 and 86 of A/C relay.

FL -497

SPECIFICATION

Terminal	Power approval
30~87	NO
85~86	YES (About 70 ~ 120)

87.Power supply to A/C compressor 85.A/C relay control power 86.A/C relay control 30.A/C relay switch power

SGHFL7285N

5) Is the measured resistance within specification?

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

Substitute with a known - good A/C relay and check for proper operation. If the problem is corrected, replace A/C relay and go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. After testing PCM on the vehicle, use this function before reusing the PCM

VERIFICATION OF VEHICLE REPAIR E3312F72

Refer to DTC P0646.

FL -498 FUEL SYSTEM

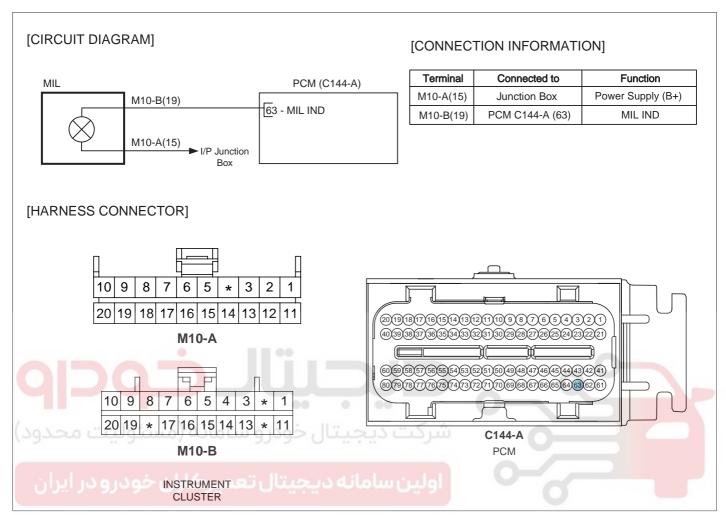
DTC P0650 MALFUNCTION INDICATOR LAMP(MIL) CONTROL CIRCUIT

GENERAL DESCRIPTION E6D2FD18

The Malfunction Indicator Lamp (MIL), which is located in the instrument cluster, comes on to notify the driver that there may be a problem with the vehicle and that service is needed. Immediately after the ignition switch turns on, the malfunction indicator lamp is lit to indicate that the MIL operates normally and goes off after starting

DTC DESCRIPTION E439F418

Checking input signal of engine check lamp every 10 sec. under detecting condition, if open, short to battery or ground is detected, PCM sets P0650.

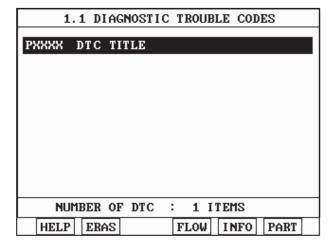

DTC DETECTING CONDITION E13B1BB7

Item	Detecting Condition	Possible cause
DTC Strategy	Check the MIL	Poor connection Open or short in MIL circuit Faulty MIL Faulty PCM
Enable Conditions	 After 0.5 sec under conditions below Engine running 11V Battery voltage 16V 	
Threshold value	Open or short	
Diagnosis Time	Continuous	
MIL On Condition	DTC only (NO MIL ON)	

اولین سامانه دیجیتال تعمیرکاران خودرو در ایران

FL -499

SCHEMATIC DIAGRAM



SGHFL7337N

MONITOR DTC STATUS EFC8DF85

- 1. Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu
 - 4) Read "DTC Status" parameter.

FL -500 FUEL SYSTEM

PXXXX DTC TITLE

1.MIL STATUS: ON/OFF
2.DTC STATUS: PRESENT/HISTORY
3.DIAG.STATUS: DIAGNOSIS FINISHED!

SGHFL7305L

5) Is "Present" Fault displayed?

YES

Go to "Terminal and connector inspection" procedure.

NO

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

TERMINAL AND CONNECTOR INSPECTION E64394E2

- 1. Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- 2. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

Repair as necessary and go to "Verification of Vehicle Repair" procedure

NO

Go to " Power Circuit Inspection " procedure.

POWER CIRCUIT INSPECTION EA831951

- 1. IG "OFF" and disconnect Instrument cluster connector.
- 2. IG "ON" and ENG "OFF"
- 3. Measure voltage between terminal 15 of instrument cluster harness connector and chassis ground.

Specification: Approx. B+

FL -501

4. Is the measured voltage within specification?

Go to "Control Circuit Inspection" procedure.

Check fuse between battery and instrument cluster.

Repair open or short to ground in harness, and go to "Verification of Vehicle Repair" procedure.

CONTROL CIRCUIT INSPECTION EBB1D83C

- 1. IG "OFF" and disconnect PCM connector.
- 2. IG "ON" and ENG "OFF"
- 3. Measure voltage between 63 of PCM harness connector(C144-A) and chassis ground.

Specification: Approx. B+

4. Is the measured voltage within specification?

Go to "Component Inspection" procedure.

لین سامانه دیجیتال تعمیرکاران خودرو در ایر

Check open in Engine warning lamp's filament.

Repair open or short to ground in harness, and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION E2AE32BC

- 1. Check instrument cluster
 - 1) IG "OFF"
 - 2) Substitute with a known good instrument cluster and check for proper operation.
 - 3) Does it normally operate after replacement?

YES

Replace instrument cluster and go to "Verification of Vehicle Repair" procedure.

NO

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. After testing PCM on the vehicle, use this function before reusing the PCM

FL -502 FUEL SYSTEM

VERIFICATION OF VEHICLE REPAIR ED29D49D

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC

NO

Go to the applicable troubleshooting procedure.

FL -503

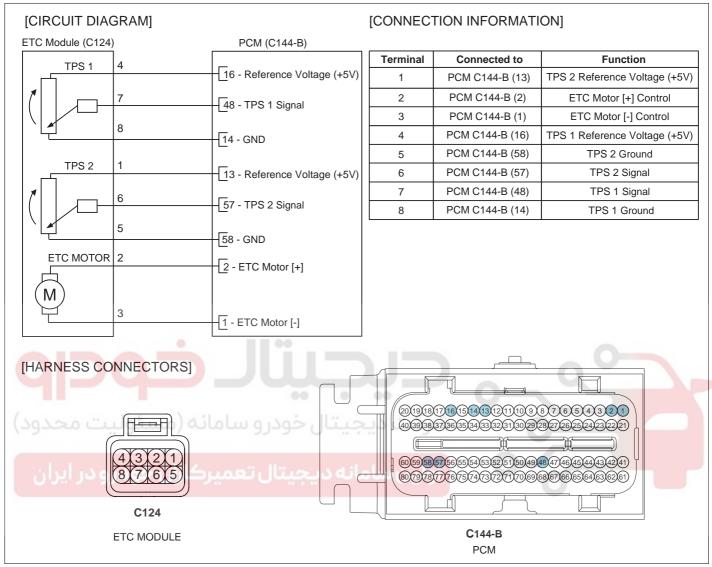
DTC P0651 SENSOR REFERENCE VOLTAGE "B" CIRCUIT OPEN

GENERAL DESCRIPTION E523A97B

The PCM provides a 5volt reference voltage to Throttle Position Sensor 2(TPS2). The PCM monitors reference voltage deviation from the power supply circuit of the sensors.

DTC DESCRIPTION E9622C3E

Checking the voltage from sensor power supply every 1.87 sec. under detecting condition, if the value within detecting condition lasts for more than 0.2 sec., PCM sets P0651. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

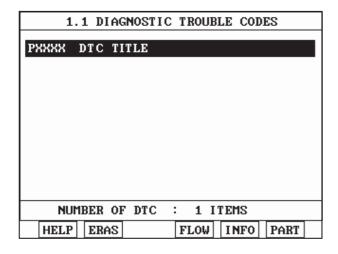

DTC DETECTING CONDITION ED597146

Item	Detecting Condition	Possible Cause
DTC Strategy	Sensor reference voltage check	Short in sensor power supply line Faulty PCM
Enable condition	• Key "ON"	
threshold value	Sensor supply power 4.5V or 5.5V	
diagnosis time	 Continuous (More than 0.2 seconds failure for every 1.87 seconds test) 	
MIL ON condition	2 driving cycles	

ولین سامانه دیجیتال تعمیرکاران خودرو در ایران

FL -504 FUEL SYSTEM

SCHEMATIC DIAGRAM EC763175



UFBG236A

MONITOR DTC STATUS ED5338D

- 1. Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu
 - 4) Read "DTC Status" parameter.

FL -505

PXXXX DTC TITLE

1.MIL STATUS: ON/OFF
2.DTC STATUS: PRESENT/HISTORY
3.DIAG.STATUS: DIAGNOSIS FINISHED!

SGHFL7305L

5) Is "Present" Fault displayed?

YES

Go to "Terminal and connector inspection" procedure.

NO

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

TERMINAL AND CONNECTOR INSPECTION ED710EFD

- Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- 2. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

Repair as necessary and go to "Verification of Vehicle Repair" procedure

NO

Go to "Power Circuit Inspection" procedure.

POWER CIRCUIT INSPECTION E860CF13

- 1. Check voltage
 - 1) IG "OFF".
 - 2) Disconnect TPS connector.
 - 3) IG "ON" and ENG "OFF"

FL -506 FUEL SYSTEM

4) Measure the voltage between terminal 1 of TPS harness connector and chassis ground.

Specification: Approx. 5V

5) Is the measured voltage within specification?

YES

Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage. Repair as necessary and go to "Verification of Vehicle Repair" procedure.

NO

Go to "Check short in harness" as follows.

- 2. Check short in harness
 - 1) IG "OFF".
 - Disconnect TPS connector and PCM connector.
 - Measure the resistance between terminal 1 and 2 of TPS harness connector.
 - 4) Measure the resistance between terminal 1 and 3 of TPS harness connector.
 - Measure the resistance between terminal 1 and 5 of TPS harness connector.
 - 6) Measure the resistance between terminal 1 and 8 of TPS harness connector.

Specification: Infinite

ال سمانه دینجیتان تعمیرصاران خودرو در ایران

7) Is the measured resistance within specification?

YES

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

NO

Repair Short in power harness and go to "Verification of Vehicle Repair" procedure.

Procedure of ETS Initialization

- 1. Erase the trouble codes on PCM
- 2. Turn the ignition key off and keep this condition until the main relay is turned off.(10 sec)
- 3. Turn ignition key on more than 1second to record the throttle motor position on the EEPROM

VERIFICATION OF VEHICLE REPAIR E1FF81EA

After a repair, it is essential to verify that the fault has been corrected.

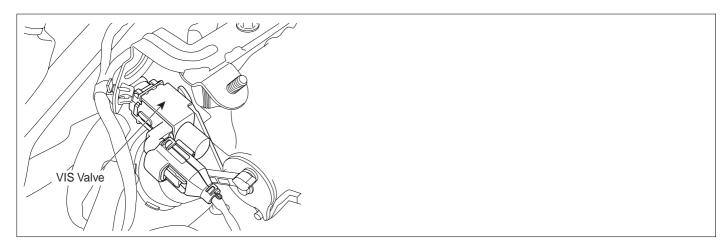
- Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter

FL -507

4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC

Go to the applicable troubleshooting procedure.



FL -508 FUEL SYSTEM

DTC P0660 INTAKE MANIFOLD TUNING VALVE CONTROL CIRCUIT/OPEN (BANK 1)

COMPONENT LOCATION EF197B0

SGHFL7338N

GENERAL DESCRIPTION

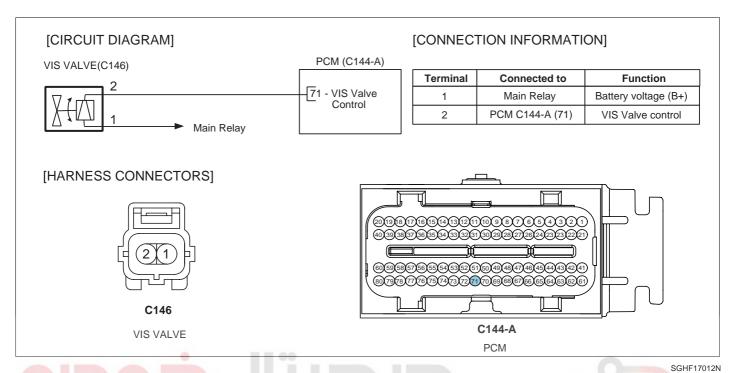
VIS(Variable intake system) is a device which varies the length of intake manifold to genetate maximum power at certain RPM. VIS lengthens intake manifold to improve the torque at low RPM when vehicle speed is low while it shortens intake manifold to raise torque at high RPM when vehicle speed is high. PCU controlls VIS using RPM signal.

DTC DESCRIPTION E5807CC7

E9DF73F8

Checking the output voltage from VIS every 10 sec. under detecting condition, if the value within detecting condition lasts for more than 5 sec., PCM sets P0660. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION E444D8A1


Item Detecting Condition		Possible Cause
DTC Strategy	Check VIS	
Enable condition	 After 0.5 sec under conditions below Engine running 11V Battery voltage 16V 	Poor connection
Threshold value	Open or short	Open or short in VIS circuit Faulty VIS
Diagnosis time	Continuous (More than 5 seconds failure for every 10 seconds test)	• Faulty PCM
MIL ON condition	2 driving cycles	

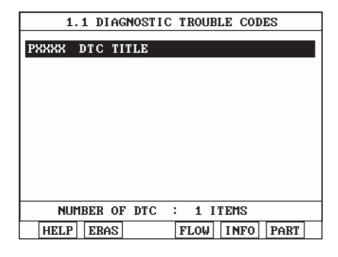
SPECIFICATION E719439C

Item	Specification
Coil Resistance ()	30.0 ~ 35.0 [22 (71.6)]

FL -509

SCHEMATIC DIAGRAM E81B6647

MONITOR DTC STATUS


E3810B96

Check DTC Status

1) Connect scantool to Data Link Connector(DLC).

2) IG "ON".

- Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu
- 4) Read "DTC Status" parameter.

1.MIL STATUS: ON/OFF
2.DTC STATUS: PRESENT/HISTORY
3.DIAG.STATUS: DIAGNOSIS FINISHED!

SGHFL7305L

5) Is "Present" Fault displayed?

YES

FL -510 FUEL SYSTEM

Go to "Terminal and connector inspection" procedure.

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

TERMINAL AND CONNECTOR INSPECTION EC627A3

- 1. Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- 2. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

Repair as necessary and go to "Verification of Vehicle Repair" procedure

NO

Go to "Power Circuit Inspection" procedure.

POWER CIRCUIT INSPECTION E602A1C7

- IG "OFF" and disconnect VIS connector.
- 2. IG "ON" and ENG "OFF"
- 3. Measure voltage between terminal 1 of VIS harness connector and chassis ground.

Specification: Approx. B+

4. Is the measured voltage within specification?

YES

Go to "Control Circuit Inspection" procedure.

NO

Check fuse connected to power of VIS.

Repair open or short to ground in harness, and go to "Verification of Vehicle Repair" procedure.

CONTROL CIRCUIT INSPECTION EA6F384:

- Check voltage
 - IG "OFF" and disconnect VIS connector.
 - 2) IG "ON" and ENG "OFF"
 - 3) Measure voltage between terminal 2 of VIS harness connector and chassis ground.

FL -511

Specification: Approx. 2.5V

4) Is the measured voltage within specification?

YES

Go to "Component Inspection" procedure.

NO

Go to "Check short in harness" as follows.

- Check short in harness
 - 1) IG "OFF" and disconnect VIS connector and PCM connector.
 - 2) Measure resistance between terminal 2 of VIS harness connector and chassis ground.
 - 3) Measure resistance between terminals 1 and 2 of VIS harness connector.

Specification: Infinite

4) Is the measured resistance within specification?

YES

Go to "Check open in harness" as follows.

NO

Repair short in harness, and go to "Verification of Vehicle Repair" procedure.

- 3. Check open in harness
 - 1) IG "OFF" and disconnect VIS connector and PCM connector.
 - Measure resistance between terminal 2 of VIS harness connector and terminal 71 of PCM harness connector (C144-A).

Specification: Below 1

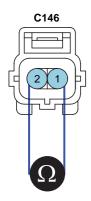
3) Is the measured resistance within specification?

YES

Go to "Component Inspection" procedure.

NO

Repair open in harness, and go to "Verification of Vehicle Repair" procedure.


COMPONENT INSPECTION E1FBCA13

- 1. Check VIS
 - 1) IG "OFF" and disconnect VIS connector.

FL -512 FUEL SYSTEM

2) Measure resistance between terminals 1 and 2 of VIS connector.(Component side)

Specification: 30.0 ~ 35.0 [22 (71.6)]

- 1. VIS Power
- 2. VIS Control

SBLF26659L

3) Is the measured resistance within specification?

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

NO

Substitute with a known - good VIS and check for proper operation. If the problem is corrected, replace VIS and go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. After testing PCM on the vehicle, use this function before reusing the PCM

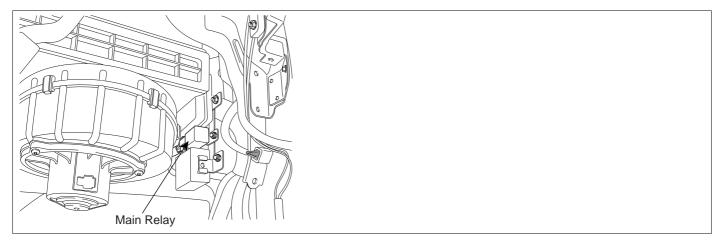
VERIFICATION OF VEHICLE REPAIR E38DAFDR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

YES

System performing to specification at this time. Clear the DTC


NO

Go to the applicable troubleshooting procedure.

FL -513

DTC P0685 ECM/PCM POWER RELAY CONTROL CIRCUIT /OPEN

COMPONENT LOCATION EA31D135

SGHFL7333N

GENERAL DESCRIPTION E7E2B57

The PCM provides ground to one side of the coil of the main relay and the other side is connected to the battery. The PCM monitors battery voltage and the voltage after the main relay.

DTC DESCRIPTION E1217702

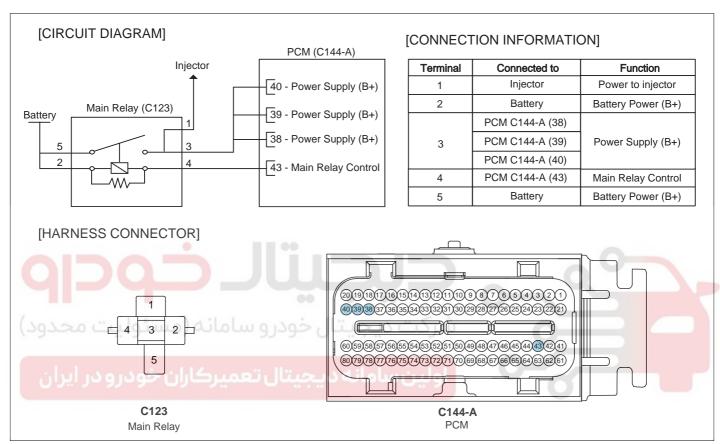
Checking the contolling state of main relay every 10 sec. under detecting condition, if open or short in the circuit is detected for more than 5 sec., PCM sets P0685.

DTC DETECTING CONDITION E7E31514

Item	Detecting Condition	Possible cause
DTC Strategy	Detects a short to ground, to battery or open circuit on the main relay	
EnableConditions	Engine Running 11V Ignition Voltage 16V	Poor ConnectionOpen or short in control
Threshold value	Open or Short in circuit	circuit. • Faulty Main Relay
DiagnosisTime	Contineous (More than 5sec. Failure for every 10 sec. test)	• Faulty PCM
MIL On Condition	DTC only (NO MIL ON)	

If Main relay has a fault(ex. Open) while the engine is running, the DTCs,P0638/P0685/P1295/P2106, can happen at the same time.

< DTC Name >

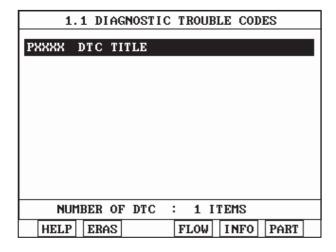

- P0638 Throttle Actuator Control Range/Performance(Bank 1)
- P0685 PCM/PCM Power Relay Control Circuit /Open
- P1295 Throttle Actuator Control System Power Management
- P2106 Throttle Actuator Control System Forced Limited Power

FL -514 FUEL SYSTEM

SPECIFICATION E95B6D5B

Coil Resistance					
70 ~ 120					

SCHEMATIC DIAGRAM EA2B7DBD



SGHFL7334N

MONITOR DTC STATUS E170D9B8

- 1. Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu
 - 4) Read "DTC Status" parameter.

FL -515

PXXXX DTC TITLE

1.MIL STATUS: ON/OFF
2.DTC STATUS: PRESENT/HISTORY
3.DIAG.STATUS: DIAGNOSIS FINISHED!

SGHFL7305L

5) Is "Present" Fault displayed?

Go to "Terminal and connector inspection" procedure.

NO

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

TERMINAL AND CONNECTOR INSPECTION E9B22D26

- 1. Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- 2. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

Repair as necessary and go to "Verification of Vehicle Repair" procedure

NO

Go to " Power Circuit Inspection " procedure.

POWER CIRCUIT INSEPCTION EE4B136F

- 1. IG "OFF"
- 2. Disconnect Main Relay
- 3. IG "ON" & ENG "OFF".
- 4. Measure the voltage between terminal 2 of main relay harness connector and chassis ground.

FL -516 FUEL SYSTEM

5. Measure the voltage between terminal 5 of main relay harness connector and chassis ground.

Specification: B+

6. Is the measured voltage within specification?

Go to "Control Circuit Inspecition" procedure.

NO

Check fuse between battery and main relay is disconnected.

Repair or replace open or short in harness and then go to "Verification of Vehicle Repair" procedure.

CONTROL CIRCUIT INSPECTION ED120465

- 1. Check short in harness
 - 1) IG "OFF".
 - 2) Disconnect Main Relay and PCM connector.
 - 3) Measure resistance between terminal 4 of Main Relay and chassis ground.
 - 4) Measure resistance between terminals 4 and 2 of Main Relay.

Specification: Infinite

5) Is the measured resistance within specification?

YES

Go to "Check open in harness" as follows.

NO

Repair or replace as necessary and then go to "Verification of Vehicle Repair" procedure.

- 2. Check open in harness
 - 1) IG "OFF".
 - 2) Disconnect Main Relay and PCM connector.
 - Measure resistance between harness terminal 4 of Main Relay and harness terminal 43 of PCM harness connector.

Specification: Approx. below 1

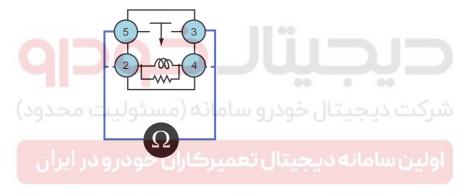
4) Is the measured resistance within specifications?

YES

Go to "Component Inspection" procedure.

NO

FL -517


Repair or replace as necessary and then, go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION E51BEBFF

- 1. Check Main Relay
 - 1) IG "OFF"
 - 2) Disconnect Main Relay
 - Measure the resistance between terminal 2 and 4 of main relay.
 - 4) Measure the resistance between terminal 5 and 3 of main relay.

SPECIFICATION:

Terminal continuity		
3 ~ 5	NO	
2 ~ 4	YES (Approx. 70 ~ 120)	

5) Is the measured reisistance within specification?

YES

Substitute with a known - good PCM and check for proper operation.

If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

NOTE

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM.

Substitute with a known - good Main Relay and check for proper operation. If the problem is corrected, replace Main Relay and go to "Verification of Vehicle Repair"procedure.

VERIFICATION OF VEHICLE REPAIR EF925CD.

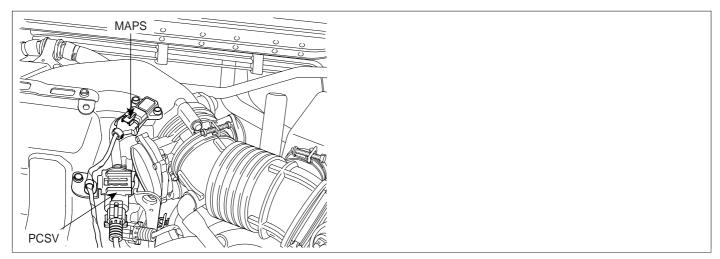
After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions

FL -518 FUEL SYSTEM

- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC


Go to the applicable troubleshooting procedure.

FL -519

DTC P1106 MANIFOLD ABSOLUTE PRESSURE SENSOR CIRCUIT SHORT INTERMITTENT HIGH INPUT

COMPONENT LOCATION E9CB6320

SGHFL7314N

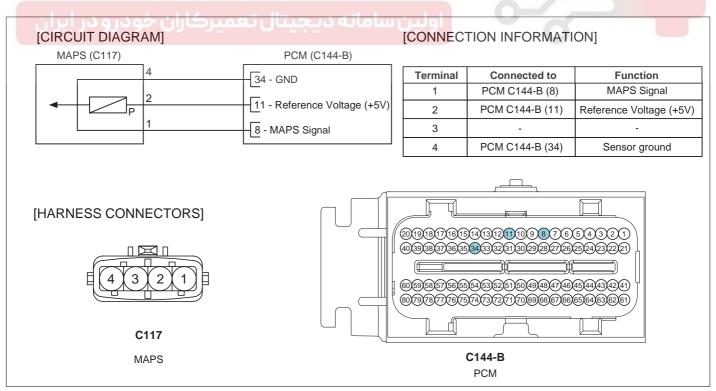
GENERAL DESCRIPTION E9483C

The amount of intake air flow must be inputted to PCM in order to determine the fuel injection quantity. MAPS(Manifold Absolute Pressure) calculates the amount of air indirectly as measuring the pressure inside of intake manifold. This mechanism is also called Speed-Density Type.MAPS transfers analog output signal which is proportional to the change of intake manifold pressure, then, with this signal and RPM, PCM calculates the amount of intake air flow.MAPS is mounted on surge tank to measure the pressure inside of intake manifold, and it consists of a piezo electric element and hybrid IC which amplifies output signal from the element. A piezo electric element is a sort of a diaphragm using piezo electric effect. One side of the diaphragm is surrounded with vacuum chamber while intake pressure is applied to the other side. Thus, signals are outputted by the transformation of diaphragm according to the change of pressure inside of intake manifold.

DTC DESCRIPTION EA57E077

Checking output signals of MAPS under detecting condition, if an output signal is intermittently above 4.5V ., PCM sets P1106.

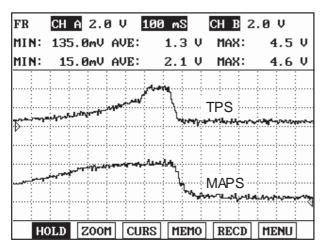
FL -520 FUEL SYSTEM


DTC DETECTING CONDITION E82AFE3D

Item		Detecting Condition	Possible Cause
DTC S	Strategy	Monitor the signal of MAP sensor	
Enable	Case 1	 No TPS Active Fault Present Engine Running Time > 10sec. Engine Speed 2500rpm Throttle Position 30% 	Poor connection
Condi- tions	Case 2	 No TPS Active Fault Present Engine Running Time > 10sec. Engine Speed > 2500rpm Throttle Position 40% 	 Short to battery in signal circuit Open in ground circuit Faulty MAPS Faulty PCM
Thresho	old value	Intermittently MAP Signal > 4.5V	,
Diagnosis Time MIL On Condition		Continuous	
		DTC only (NO MIL ON)	

SPECIFICATION EF32A797

Pressure(kPa)	20	35	60	95	101.32		
Voltage(V)	0.789	1.382	2.369	3.75	4		
Allowable error(V) ± 0.045							
شرکت دیجیتال خودرو سامانه (مسئولیت محدود)							


SCHEMATIC DIAGRAM E865F5A3

UFBG240A

FL -521

SIGNAL WAVEFROM AND DATA EB23D

Comparing MAPS and TPS, The signals of MAPS and TPS increasess and decrease simultaneously.

EGRF958A

MONITOR DTC STATUS E2B12E15

- 1. Check DTC Status
 - Connect scantool to Data Link Connector(DLC).
 - شرکت دیجیتال خودر و سامانه (مسئور ON".
 - Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu

PXXXX DTC TITLE

4) Read "DTC Status" parameter.

	1.1	DIA	GNOSTIC	TROUBL	E COD	ES	
PXXXX	D	TC T	ITLE				
NUMBER OF DTC : 1 ITEMS							
HEL	P	ERAS		FLOW	INFO	PART	

1.MIL STATUS: ON/OFF
2.DTC STATUS: PRESENT/HISTORY
3.DIAG.STATUS: DIAGNOSIS FINISHED!

SGHFL7305L

5) Is "Present" Fault displayed?

YES

Go to "Terminal and connector inspection" procedure.

NO

FL -522 FUEL SYSTEM

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

TERMINAL AND CONNECTOR INSPECTION EF040D7E

- 1. Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

Repair or replace if necessary and go to "Verification of Vehicle Repair" procedure

Go to "Power Circuit Inspection" procedure.

POWER CIRCUIT INSPECTION

E9CBBD0A

- 1. IG "OFF"
- 2. Disconnect MAPS connector
- 3. IG "ON"
- 4. Measure the voltage between terminal 2 of MAPS harness connector and ground.

Specification: Approx. 5V

5. Is the measured voltage within specification?

Go to "Ground Circuit Inspection" procedure.

If the voltage is over 5.1V, check short to battery in harness.

Repair or replace as necessary and then, go to "Verification of Vehicle Repair" procedure.

GROUND CIRCUIT INSPECTION E736E9C

- 1. IG "OFF".
- 2. Disconnect MAPS connector.
- 3. IG "ON" & ENG "OFF"
- 4. Measure the voltage between terminal 2 of MAPS harness connector and chassis ground.
- 5. Measure the voltage between terminal 2 and 4 of MAPS harness connector.

FL -523

Specification: "A" - "B" = : Approx. below 200mV

6. Is the measured voltage within specification?

Go to "Signal Circuit Inspection" procedure.

Repair contact reistance or open in harness and then go to "Verification of Vehicle Repair" procedure.

SIGNAL CIRCUIT INSPECTION E055C75

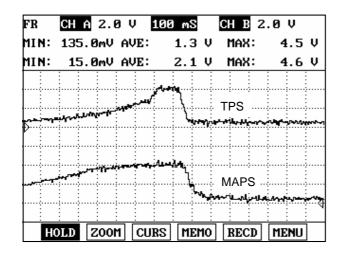
- 1. IG "OFF"
- 2. Disconnect MAPS and PCM connector.
- 3. Measure resistance between terminal 1 and 2 of MAPS harness connector.

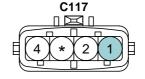
Specification: Infinite

4. Is the measured resistance within specification?

Go to "Component inspection" procedure.

Repair short to battery in harness and then go to "Verification of Vehicle Repair" procedure.


COMPONENT INSPECTION E6940DC7


- 1. MAPS performance test
 - 1) IG "OFF"
 - 2) Connect scantool to Data Link Connector(DLC) and select "Oscilloscope" then, connect probes to output signal lines of MAPS and TPS.Turn engine "ON" and monitor the waveforms accelerating or decelerating
 - 3) Start engine and monitor signal waveform during acceleration and deceleration.

SPECIFICATION:

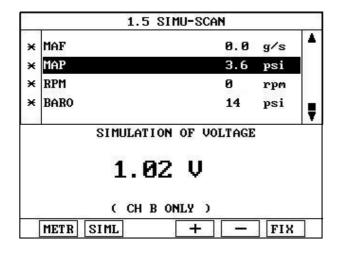
Pressure (kPa)	20	35	60	95	101.32
Voltage (V)	0.789	1.382	2.369	3.75	4
Tolerance (V)	± 0.045				

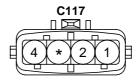
FL -524 FUEL SYSTEM

- 1. MAPS Signal
- 2. MAPS Power
- 4. MAPS Ground

SBLF26450L

4) Is the waveform displayed correctly?(Compare the response time of TPS and MAPS)


YES


Go to "Check PCM".

NO

After replacing MAPS with new one, if it operates normally, replace MAPS and go to "Verification of Vehicle Repair".

- Check PCM
 - 1) IG "OFF" and disconnect MAPS connector.
 - 2) Connect scantool and IG "ON" & ENG "OFF"
 - 3) Select simulation function on scantool.
 - 4) Simulate voltage at terminal 1 of MAPS harness connector.

- 1. MAPS Signal
- 2. MAPS Power
- 4. MAPS Ground

SBLF26454L

5) Does the output voltage response to the change of signal by simulation?

YES

FL -525

Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage. Repair or replace if necessary and go to "Verification of Vehicle Repair" procedure

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. Before or after testing PCM on the vehicle, use this function before reusing the PCM

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode 1.
- Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within condi-2. tions noted in the freeze frame data or enable conditions
- Read "DTC Status" parameter 3.
- Is "History (Not Present)" fault displayed?

YES

System performing to specification at this time. Clear the DTC

NO

Go to the applicable troubleshooting procedure.

FL -526 FUEL SYSTEM

DTC P1107 MANIFOLD ABSOLUTE PRESSURE SENSOR CIRCUIT SHORT - INTERMITTENT LOW INPUT

COMPONENT LOCATION E332FEBA

Refer to DTC P1106.

GENERAL DESCRIPTION E49C23FE

Refer to DTC P1106.

DTC DESCRIPTION EFF6581C

Checking output signals of MAPS under detecting condition, if an output signal is intermittently below 0.25V, PCM sets P1107.

DTC DETECTING CONDITION E9373E4F

Item		Detecting Condition	Possible Cause			
DTC S	trategy	Monitor the signal of MAP sensor				
Enable	Case 1	 No TPS Active Fault Present Ignition Voltage 11V Engine Speed 1000rpm Throttle Position 0% 	Poor ConnectionOpen or Short to ground			
Condi- tions	Case 2	 No TPS Active Fault Present Ignition Voltage 11V Engine Speed > 1000rpm Throttle Position 30% 	in Power Circuit Open or short to ground in Signal Circuit. Faulty MAPS			
Thresho	old value	Intermittently MAP Signal < 0.25V	Faulty PCM			
Diagnosis Time		Continuous				
MIL On Condition		DTC only (NO MIL ON)				

SPECIFICATION E3331F87

Pressure(kPa)	20	35	60	95	101.32
Voltage(V)	0.789	1.382	2.369	3.75	4
Allowable error(V)			± 0.045		

SCHEMATIC DIAGRAM E97A35C0

Refer to DTC P1106.

SIGNAL WAVEFORM AND DATA E8C1A03E

Refer to DTC P1106.

FL -527

MONITOR DTC STATUS EB7F8DD6

Refer to DTC P1106.

TERMINAL AND CONNECTOR INSPECTION E120B6A

Refer to DTC P1106.

POWER CIRCUIT INSPECTION E7219806

- 1. IG "OFF"
- 2. Disconnect MAPS connector.
- 3. IG "ON"
- 4. Measure the voltage between terminal 2 of MAPS harness connector and ground.

Specification: Approx. 5V

5. Is the measured voltage within specification?

YES

Go to "Signal Circuit Inspection" of MAPS.

شرکت دیجیتال خودر و سامانه (مسئولیت ، NO

After repairing open or short to ground in harness and go to "Verification of Vehicle Repair"

SIGNAL CIRCUIT INSPECTION EB73DB36

- 1. Check short to ground in harness
 - 1) IG "OFF"
 - 2) Disconnect MAPS and PCM connector.
 - 3) Measure the resistance between terminal 1 of MAPS harness connector and ground.

Specification: Infinite

4) Is the measured resistance within the specification?

YES

Go to "Check for open circuit" of MAPS.

NO

After repairing short to ground in circuits and go to "Verification of Vehicle Repair"

- 2. Check for open circuit
 - 1) IG "OFF"
 - 2) Disconnect MAPS and PCM connector.

FL -528 FUEL SYSTEM

 Measure the resistance between terminal 1 of MAPS harness connector and terminal 8 of PCM harness connector(C144-B).

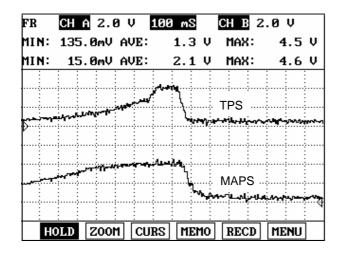
Specification: Approx. below 1

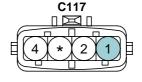
4) Is the measured resistance within the specification?

YES

Go to "Component Inspection" of MAPS.

NO


Repair open in the harness and go to "Verification of Vehicle Repair".


COMPONENT INSPECTION E3FDF4AB

- MAPS performance test
 - 1) IG "OFF"
 - 2) Connect scantool to Data Link Connector(DLC) and select "Oscilloscope" then, connect probes to output signal lines of MAPS and TPS.Turn engine "ON" and monitor the waveforms accelerating or decelerating
 - 3) ENG "ON" and monitor signal waveform during acceleration and deceleration.

شرکت دیجیتال خودر و سامانه (مسئول: SPECIFICATON

Pressure (kPa)	20	35	60	95	101.32
ا تعمیرکار (Voltage (V	0.789	1.382	2.369	3.75	4
Tolerance (V)			± 0.045		

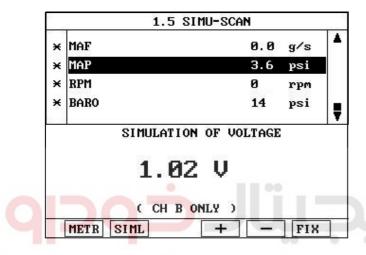
- 1. MAPS Signal
- 2. MAPS Power
- -
- 4. MAPS Ground

SBLF26450L

4) Is the waveform displayed correctly?(Compare the response time of TPS and MAPS)

YES

Go to "Check PCM".


NO

FL -529

After replacing MAPS with new one, if it operates normally, replace MAPS and go to "Verification of Vehicle Repair".

2. Check PCM

- 1) IG "OFF" disconnect MAPS connector
- 2) Connect Scantool and IG "ON" & ENG "OFF"
- 3) Select simulation function on scantool.
- 4) Simulate voltage at terminal 1 of MAPS harness connector.

- 1. MAPS Signal
- 2. MAPS Power
- 4. MAPS Ground

SBLF26454L

5) Does the output voltage response to the change of signal by simulation?

YES

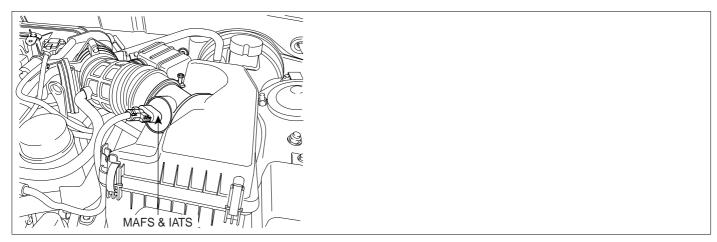
Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage. Repair or replace if necessary and go to "Verification of Vehicle Repair" procedure

NO

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

NOTE

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. Before or after testing PCM on the vehicle, use this function before reusing the PCM


VERIFICATION OF VEHICLE REPAIR F10E809E

Refer to DTC P1106.

FL -530 FUEL SYSTEM

DTC P1111 INTAKE AIR TEMPERATURE SENSOR CIRCUIT SHORT - INTERMITTENT HIGH INPUT

COMPONENT LOCATION EE33FC08

SGHFL7313N

GENERAL DESCRIPTION

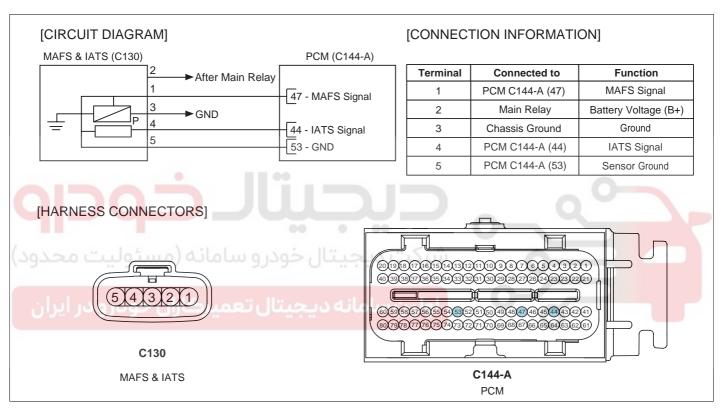
E7565796

The Intake Air Temperature Sensor (IATS) is installed into the Mass Air Flow Sensor (MAFS). The IATS uses a thermistor whose resistance changes with the temperature. The electrical resistance of the IATS decreases as the temperature increases, and increases as the temperature decreases. The 5 V power source in the PCM is supplied to the IATS via a resistor in the PCM. That is, the resistor in the PCM and the thermistor in the IATS are connected in series. When the resistance value of the thermistor in IATS changes according to the intake air temperature, the signal voltage also changes. Using this signal, the information of the intake air temperature, the PCM corrects basic fuel injection duration and ignition timing.

DTC DESCRIPTION E114271B

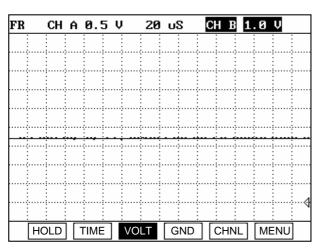
Checking output signals of IATS under detecting condition, if an ouput signal is intermittently over 4.9V, PCM sets P1111.

DTC DETECTING CONDITION E051B7EC


Item	Detecting Condition	Possible Cause	
DTC Strategy	Monitor the signal of IAT sensor		
Enable Conditions	 Engine running No Vehicle speed sensor fault No ECTS fault No MAFS fault Intake airflow < 15 g/s Vehicle speed < 25kph(9.3mph) Engine coolant temperature > 50 (122) 	 Poor Connection Open or short in signal circuit Open in ground circuit Faulty IATS Faulty PCM 	
Threshold value	 Intermittently Intake air temperature sensor's voltage > 4.9V 		
Diagnosis Time	Continuous		
MIL On Condition	DTC only (NO MIL ON)		

FL -531

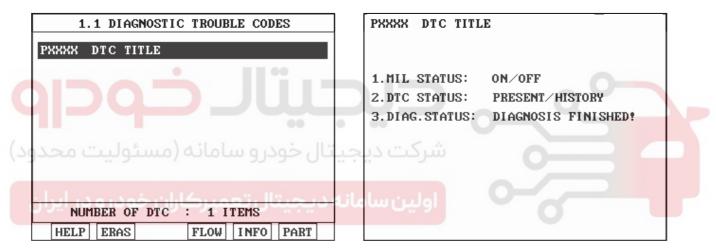
SPECIFICATION EF3A0737


Temp. (/)	Resistance (k)	Temp. (/)	Resistance (k)
-40(-40)	95.95 ~ 105.78	20(68)	3.42 ~ 3.61
-20(-4)	27.4 ~ 29.77	40(104)	1.43 ~ 1.5
0(32)	9.08 ~ 9.72	60(140)	0.66 ~ 0.69
10(50)	5.49 ~ 5.83	80(176)	0.33 ~ 0.34

SCHEMATIC DIAGRAM E118EE8D

SGHF17008N

SIGNAL WAVEFORM AND DATA E18264DE


EGRF604E

FL -532 FUEL SYSTEM

The output signals of IATS & ECTS change smoothly without any rapid changes. Those have almost same characteristic signal during the early period after start. It means that the temperatures of intake air and engine coolant are depended on the temperature of atmosphere. Meanwhile, during the warming up, the output signal of ECTS is going up increasingly. but, the output signal of IATS changes a little bit. even it may not change almost. It means that the heat of engine does not affect on the temperature of intake air.

MONITOR DTC STATUS ETCEBOES

- Check DTC Status
 - Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu
 - 4) Read "DTC Status" parameter.

SGHFL7305L

5) Is "Present" Fault displayed?

Go to "Terminal and connector inspection" procedure.

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

TERMINAL AND CONNECTOR INSPECTION EEC47CD

- 1. Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- 2. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

FL -533

YES

Repair as necessary and go to "Verification of Vehicle Repair" procedure

NO

Go to "Signal Circuit Inspection" procedure.

SIGNAL CIRCUIT INSPECTION EFBB697

- Check voltage
 - 1) IG "OFF" and disconnect IATS connector.
 - 2) IG "ON" and ENG "OFF"
 - Measure voltage between terminal 4 of IATS harness connector and chassis ground.

Specification: Approx. 5V

4) Is the measured voltage within specification?

YES

Go to "Ground Circuit Inspection" procedure.

NO

If the voltage is 0V, go to "Check open in harness" as follows. If the voltage is more than 5.1V, go to "Check short to battery in harness" as follows.

- 2. Check short to battery in harness
 - 1) IG "OFF" and disconnect IATS connector and PCM connector.
 - Measure resistance between terminals 2 and 4 of IATS harness connector.
 - 3) Measure resistance between terminals 1 and 4 of IATS harness connector.

Specification: Infinite

4) Is the measured resistance within specification?

YES

Go to "Component Inspection" procedure.

NO

Repair short to battery in harness and go to "Verification of Vehicle Repair" procedure.

- Check open in harness
 - 1) IG "OFF" and disconnect IATS connector and PCM connctor.
 - 2) Measure resistance between terminal 4 of IATS harness connector and 44 of PCM harness connector(C144-A).

FL -534 FUEL SYSTEM

Specification: below 1

3) Is the measured resistance within specification?

Go to "Ground Circuit Inspection" procedure.

Repair open in harness and go to "Verification of Vehicle Repair" procedure.

GROUND CIRCUIT INSPECTION E25EEF44

- 1. IG "OFF" and disconnect IATS connector and then IG "ON.
- 2. Measure voltage between terminal 4 of IATS harness connector and chassis ground.
- 3. Measure voltage between terminals 4 and 5 of IATS harness connector.

Specification: Voltage difference between measurement "A" and "B" is below 200mV.

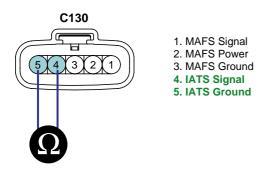
4. Is the measured voltage within specification?

YES

Go to "Component Inspection" procedure.

NO

Repair contact resistance or open in harness and go to "Verification of Vehicle Repair" procedure.


COMPONENT INSPECTION E5C89B8D

- 1. Check IATS
 - 1) IG "OFF" and disconnect IATS connector.
 - 2) Measure resistance between teminals 4 and 5 of IATS connector.(Component side)

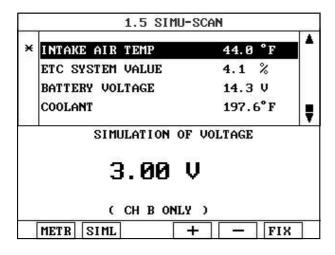
SPECIFICATION:

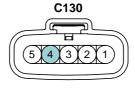
Temp. (/)	Resistance (k)	Temp. (/)	Resistance (k)
-40(-40)	95.95 ~ 105.78	20(68)	3.42 ~ 3.61
-20(-4)	27.4 ~ 29.77	40(104)	1.43 ~ 1.5
0(32)	9.08 ~ 9.72	60(140)	0.66 ~ 0.69
10(50)	5.49 ~ 5.83	80(176)	0.33 ~ 0.34

FL -535

SBLF26665L

3) Is the measured resistance within specification?


Go to "Check PCM" as follows.



Substitute with a known - good IATS and check for proper operation. If the problem is corrected, replace IATS and go to "Verification of Vehicle Repair" procedure.

Check PCM

- 1) IG "OFF" and connect scantool.
- 2) Disconnect IATS connector and connect probe to terminal 4 of IATS harness connector.
- 3) IG "ON" and ENG "OFF" and select the simulation function on scantool.
- 4) Simulate voltage at terminal 4 of IATS harness connector.

- 1. MAFS Signal
- 2. MAFS Power
- 3. MAFS Ground
- 4. IATS Signal
- 5. IATS Ground

SBLF26666L

5) Does the signal value of IAT sensor change according to simulation voltage?

Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

NO

FL -536 FUEL SYSTEM

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM.

Before or after testing PCM on the vehicle, use this function before reusing the PCM.

VERIFICATION OF VEHICLE REPAIR EADC2CE6

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC

NO

Go to the applicable troubleshooting procedure.

ولین سامانه دیجیتال تعمیرکاران خودرو در ایران

FL -537

DTC P1112 INTAKE AIR TEMPERATURE SENSOR CIRCUIT SHORT - INTERMITTENT LOW INPUT

COMPONENT LOCATION E355F735

Refer to DTC P1111.

GENERAL DESCRIPTION E9DA8125

Refer to DTC P1111.

DTC DESCRIPTION EE3C5651

Checking output signals of IATS under detecting condition, if an ouput signal is intermittently below 0.1V, PCM sets P1112.

DTC DETECTING CONDITION EDE9CA23

Item		Detecting Condition	Possible Cause
DTC Strategy		Monitor the signal of IAT sensor	
Enable Case 1		 Engine Run State No Vehicle speed sensor fault Vehicle speed > 50kph(30mph) 	Poor Connection
tions	Case 2	 Engine running time > 120 sec. Time from IG "OFF" to IG "ON" > 360 min. 	Short to ground in signal circuit. Faulty IATS
Thresho	old value	 Intermittently Intake air temperature sensor's voltage < 0.1V 	• Faulty PCM
Diagnosis Time		Continuous	o U
MIL On Condition		DTC only(NO MIL ON)	

SPECIFICATION EC1D43B1

Temp. (/)	Resistance (k)	Temp. (/)	Resistance (k)
-40(-40)	95.95 ~ 105.78	20(68)	3.42 ~ 3.61
-20(-4)	27.4 ~ 29.77	40(104)	1.43 ~ 1.5
0(32)	9.08 ~ 9.72	60(140)	0.66 ~ 0.69
10(50)	5.49 ~ 5.83	80(176)	0.33 ~ 0.34

SCHEMATIC DIAGRAM E283DA96

Refer to DTC P1111.

SIGNAL WAVEFORM AND DATA EABFC025

Refer to DTC P1111.

MONITOR DTC STATUS E10D6CD5

Refer to DTC P1111.

FL -538 FUEL SYSTEM

TERMINAL AND CONNECTOR INSPECTION E79A4D49

Refer to DTC P1111.

SIGNAL CIRCUIT INSPECTION EBB54536

- 1. Check voltage
 - 1) IG "OFF" and disconnect IATS connector.
 - 2) IG "ON" and ENG "OFF"
 - 3) Measure voltage between terminal 4 of IATS harness connector and chassis ground.

Specification: Approx. 5V

4) Is the measured voltage within specification?

Go to "Component Inspection" procedure.

NO

Go to " Check short to ground in harness" procedure.

- 2. Check short to ground in harness
 - 1) IG "OFF" and disconnect IATS connector and PCM connector.
 - Measure resistance between terminal 4 of IATS harness connector and chassis ground.
 - Measure resistance between terminals 4 and 5 of IATS harness connector.
 - 4) Measure resistance between terminals 4 and 3 of IATS harness connector.

Specification: Infinite

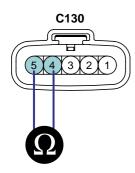
5) Is the measured resistance within specification?

YES

Go to "Component inspection" procedure.

NO

Repair short to ground in harness and go to "Verification of Vehicle Repair" procedure.


COMPONENT INSPECTION EEC03FCD

- 1. Check IATS
 - 1) IG "OFF" and disconnect IATS connector.
 - 2) Measure resistance between teminals 4 and 5 of IATS connector.(Component side)

FL -539

SPECIFICATION:

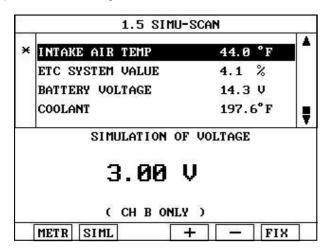
Temp. (/)	Resistance (k)	Temp. (/)	Resistance (k)
-40(-40)	95.95 ~ 105.78	20(68)	3.42 ~ 3.61
-20(-4)	27.4 ~ 29.77	40(104)	1.43 ~ 1.5
0(32)	9.08 ~ 9.72	60(140)	0.66 ~ 0.69
10(50)	5.49 ~ 5.83	80(176)	0.33 ~ 0.34

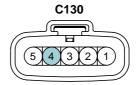
- 1. MAFS Signal
- 2. MAFS Power
- 3. MAFS Ground
- 4. IATS Signal
- 5. IATS Ground

SBLF26665L

3) Is the measured resistance within specification?

YES


Go to "Check PCM" as follows.


NO

Substitute with a known - good IATS and check for proper operation. If the problem is corrected, replace IATS and go to "Verification of Vehicle Repair" procedure.

Check PCM

- 1) IG "OFF" and connect scantool.
- 2) Disconnect IATS connector and connect probe to terminal 4 of IATS harness connector.
- IG "ON" and ENG "OFF" and select the simulation function on scantool.
- Simulate voltage at terminal 4 of IATS harness connector.

- 1. MAFS Signal
- 2. MAFS Power
- 3. MAFS Ground
- 4. IATS Signal
- 5. IATS Ground

SBLF26666L

FL -540 FUEL SYSTEM

5) Does the signal value of IAT sensor change according to simulation voltage?

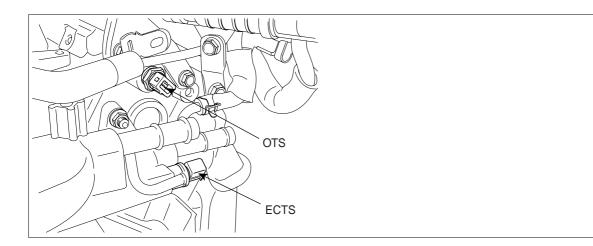
Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM.

Before or after testing PCM on the vehicle, use this function before reusing the PCM.

VERIFICATION OF VEHICLE REPAIR ECDB8AC1


Refer to DTC P1111.

FL -541

DTC P1114 ENGINE COOLANT TEMPERATURE SENSOR CIRCUIT INTERMITTENT LOW INPUT

COMPONENT LOCATION E1498F1

SGHFL7315N

GENERAL DESCRIPTION EF16F2AC

The Engine Coolant Temperature Sensor (ECTS) is located in the engine coolant passage of the cylinder head for detecting the engine coolant temperature. The ECTS uses a thermistor whose resistance changes with the temperature. The electrical resistance of the ECTS decreases as the temperature increases, and increases as the temperature decreases. The reference 5 V in the PCM is supplied to the ECTS via a resistor in the PCM. That is, the resistor in the PCM and the thermistor in the ECTS are connected in series. When the resistance value of the thermistor in the ECTS changes according to the engine coolant temperature, the output voltage also changes. During cold engine operation the PCM increases the fuel injection duration and controls the ignition timing using the information of engine coolant temperature to avoid engine stalling and improve drivability.

DTC DESCRIPTION EA98A0FA

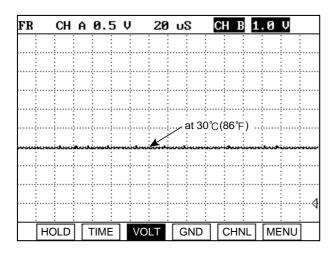
Checking output signals from ECTS under detecting condition, if an output signal is intermittently below 0.1V, PCM sets P1114.

DTC DETECTING CONDITION ED008C3A

Item		Detecting Condition	Possible Cause
DTC S	trategy	Monitor the signal of ECTS	
Enable	Case 1	Time after start-up > 120 sec.	
Condi- tions	Case 2	Time from IG "OFF" to IG "ON" > 360 min.Engine running	Poor ConnectionShort to ground in signal Circuit
Thresho	ld value	Intermittently engine coolant temperature sensor's voltage amp;lt; 0.1V	Faulty ECTS Faulty PCM
Diagnosis Time		Continuous	
MIL On Condition		DTC only (NO MIL ON)	

FL -542 FUEL SYSTEM

SPECIFICATION EC39C5F6


Temp. (/)	Resistance (k)	Temp. (/)	Resistance (k)
-40(-40)	48.14	40(104)	1.15
-20(-4)	14.13 ~ 16.83	60(140)	0.59
0(32)	5.79	80(176)	0.32
20(68)	2.31 ~ 2.59		

SCHEMATIC DIAGRAM E8295A4F

UFBG242A

SIGNAL WAVEFORM AND DATA E735692E

EGRF604P

The output signals of IATS & ECTS change smoothly without any rapid changes. Those have almost same characteristic signal during the early period after start. It means that the temperatures of intake air and engine coolant are depended on

FL -543

the temperature of atmosphere. Meanwhile, during the warming up, the output signal of ECTS is going up increasingly. but, the output signal of IATS changes a little bit. even it may not change almost. It means that the heat of engine does not affect on the temperature of intake air.

MONITOR DTC STATUS EA1DCC64

- Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu
 - 4) Read "DTC Status" parameter.

5) Is "Present" Fault displayed?

YES

Go to "Terminal and connector inspection" procedure.

NO

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

TERMINAL AND CONNECTOR INSPECTION EOBA383A

- 1. Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- 2. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

FL -544 FUEL SYSTEM

Repair as necessary and go to "Verification of Vehicle Repair" procedure

NO

Go to "Signal Circuit Inspection" procedure.

SIGNAL CIRCUIT INSPECTION E0300727

- 1. Check voltage
 - 1) IG "OFF" and disconnect ECTS connector.
 - 2) IG "ON" and ENG "OFF"
 - 3) Measure voltage between terminal 3 of ECTS harness connector and chassis ground.

Specification: Approx. 5V

4) Is the measured voltage within specification?

YES

Go to "Component Inspection" procedure.

NO

Go to "Check short to ground in harness" as follows

- 2. Check short to ground in harness
 - 1) IG "OFF" and disconnect ECTS connector and PCM connector.
 - Measure resistance between terminal 3 of ECTS harness connector and chassis ground.
 - 3) Measure resistance between terminals 1 and 3 of ECTS harness connector.

Specification: Infinite

4) Is the measured resistance within specification?

YES

Go to "Component Inspection" procedure.

NO

Repair short to ground in harness, and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION ED4A644D

- 1. Check ECTS
 - 1) IG "OFF" and disconnect ECTS connector.
 - 2) Measure resistance between terminals 1 and 3 of ECTS connector.(Component side)

FL -545

SPECIFICATION:

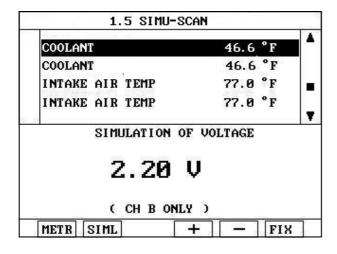
Temp. (/)	Resistance (k)	Temp. (/)	Resistance (k)
-40(-40)	48.14	40(104)	1.15
-20(-4)	14.13 ~ 16.83	60(140)	0.59
0(32)	5.79	80(176)	0.32
20(68)	2.31 ~ 2.59		

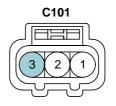
C101 3 2 1

- 1. ECTS Ground
- 2. To Gauge
- 3. ECTS Signal

SBLF26670L

3) Is the measured resistance within specification?


Go to "Check PCM" as follows.


NO

Substitute with a known - good ECTS and check for proper operation. If the problem is corrected, replace ECTS and go to "Verification of Vehicle Repair" procedure.

2. Check PCM

- 1) IG "OFF" and connect scantool.
- 2) Connect probe to terminal 3 of ECTS harness connector.
- 3) IG "ON" and ENG "OFF" and select the simulation function on scantool.
- 4) Simulate voltage at terminal 3 of ECTS harness connector.

- 1. ECTS Ground
- 2. To Gauge
- 3. ECTS Signal

SBLF26671L

FL -546 FUEL SYSTEM

5) Does the signal value of ECT sensor change according to simulation voltage?

Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM.

Before or after testing PCM on the vehicle, use this function before reusing the PCM.

VERIFICATION OF VEHICLE REPAIR E651C7AC

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC

Go to the applicable troubleshooting procedure.

FL -547

DTC P1115 ENGINE COOLANT TEMPERATURE SENSOR CIRCUIT - INTERMITTENT HIGH INPUT

COMPONENT LOCATION EEE314EF

Refer to DTC P1114.

GENERAL DESCRIPTION E20F415B

Refer to DTC P1114.

DTC DESCRIPTION E3D9A09C

Checking output signals from ECTS under detecting condition, if an output signal is intermittently above 4.9V, PCM sets P1115.

DTC DETECTING CONDITION EB4C18E8

Item		Detecting Condition	Possible Cause
DTC S	trategy	Monitor the signal of ECTS	
Enable	Case 1	Time after start-up > 120 sec.	
Condi- tions	Case 2	 Time from IG "OFF" to IG "ON" > 360 min. Intake air temperature -10 (14) Engine running 	 Poor Connection Open or short to battery in signal Circuit Open in Ground Circuit.
Threshold value		 Intermittently engine coolant temperature sensor's voltage > 4.9V 	Faulty ECTS Faulty PCM
Diagnosis Time		Continuous	0
MIL On Condition		DTC only (NO MIL ON)	

SPECIFICATION E2B944B0

Temp. (/)	Resistance (k)	Temp. (/)	Resistance (k)
-40(-40)	48.14	40(104)	1.15
-20(-4)	14.13 ~ 16.83	60(140)	0.59
0(32)	5.79	80(176)	0.32
20(68)	2.31 ~ 2.59		

SCHEMATIC DIAGRAM E0D7F13A

Refer to DTC P1114.

SIGNAL WAVEFORM AND DATA E41117BD

Refer to DTC P1114.

FL -548 FUEL SYSTEM

MONITOR DTC STATUS E0B35F8:

Refer to DTC P1114.

TERMINAL AND CONNECTOR INSPECTION EAA7258

Refer to DTC P1114.

SIGNAL CIRCUIT INSPECTION E5F6D678

- 1. Check voltage
 - 1) IG "OFF" and disconnect ECTS connector.
 - 2) IG "ON" and ENG "OFF"
 - Measure voltage between terminal 3 of ECTS harness connector and chassis ground.

Specification: Approx. 5V

4) Is the measured voltage within specification?

YES

Go to "Ground Circuit Inspection" procedure.

NO

If voltage is 0V, go to "Check open in harness" as follows. If it is more than 5.1V, go to "Check short to battery in harness" as follows

- Check short to battery in harness
 - 1) IG "OFF" and disconnect ECTS connector and PCM connector.
 - Measure resistance between terminals 2 and 3 of ECTS harness connector.

Specification: Infinite

3) Is the measured resistance within specification?

YES

Go to "Component Inspection" procedure.

NO

Repair short to battery in harness, and go to "Verification of Vehicle Repair" procedure.

- Check open in harness
 - 1) IG "OFF" and disconnect ECTS connector and PCM connector.
 - Measure resistance between terminal 3 of ECTS harness connector and terminal 7 of PCM harness connector tor(C144-B).

Specification: Below 1

FL -549

3) Is the measured resistance within specification?

Go to "Ground Circuit Inspection" procedure.

Repair open in harness, and go to "Verification of Vehicle Repair" procedure.

GROUND CIRCUIT INSPECTION ECO3B3CD

- 1. IG "OFF" and disconnect ECTS connector and then turn the ignition ON.
- 2. Measure voltage between terminal 3 of ECTS harness connector and chassis ground.
- 3. Measure voltage between terminals 1 and 3 of ECTS harness connector.

Specification: Voltage difference between measurement "A" and "B" is below 200mV.

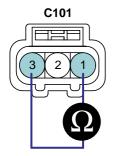
4. Is the measured voltage within specification?

YES

Go to "Component Inspection" procedure.

NO

Repair open or contact resistance in harness, and go to "Verification of Vehicle Repair" procedure.


COMPONENT INSPECTION E4E95C5B

- Check ECTS
 - 1) IG "OFF" and disconnect ECTS connector.
 - 2) Measure resistance between terminals 1 and 3 of ECTS connector.(Component side)

SPECIFICATION:

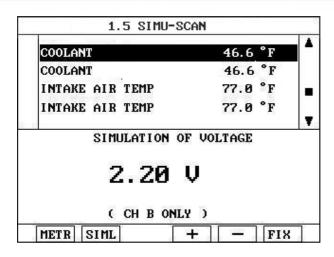
Temp. (/)	Resistance (k)	Temp. (/)	Resistance (k)
-40(-40)	48.14	40(104)	1.15
-20(-4)	14.13 ~ 16.83	60(140)	0.59
0(32)	5.79	80(176)	0.32
20(68)	2.31 ~ 2.59		

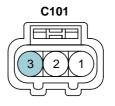
FL -550 FUEL SYSTEM

- 1. ECTS Ground
- 2. To Gauge
- 3. ECTS Signal

SBLF26670L

3) Is the measured resistance within specification?


Go to "Check PCM" as follows.



Substitute with a known - good ECTS and check for proper operation. If the problem is corrected, replace ECTS and go to "Verification of Vehicle Repair" procedure.

2. Check PCM

- 1) IG "OFF" and connect scantool.
- 2) Connect probe to terminal 3 of ECTS harness connector.
- 3) IG "ON" and ENG "OFF" and select the simulation function on scantool.
- Simulate voltage at terminal 3 of ECTS harness connector.

- 1. ECTS Ground
- 2. To Gauge
- 3. ECTS Signal

SBLF26671L

5) Does the signal value of ECT sensor change according to simulation voltage?

Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

NO

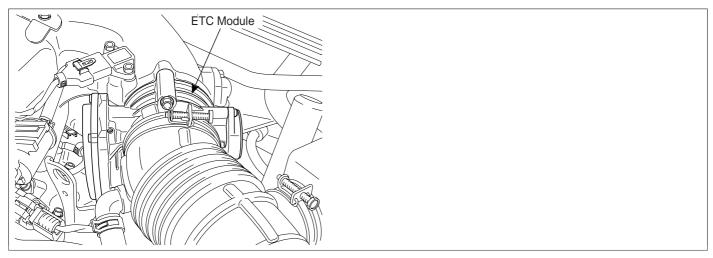
FL -551

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM.

Before or after testing PCM on the vehicle, use this function before reusing the PCM.

VERIFICATION OF VEHICLE REPAIR E59DD822


Refer to DTC P1114.

FL -552 **FUEL SYSTEM**

DTC P1295 ETC (ELECTRONIC THROTTLE CONTROL) SYSTEM **MALFUNCTION - POWER MANAGEMENT**

COMPONENT LOCATION E7955102

SGHFL7316N

GENERAL DESCRIPTION E0F1066F

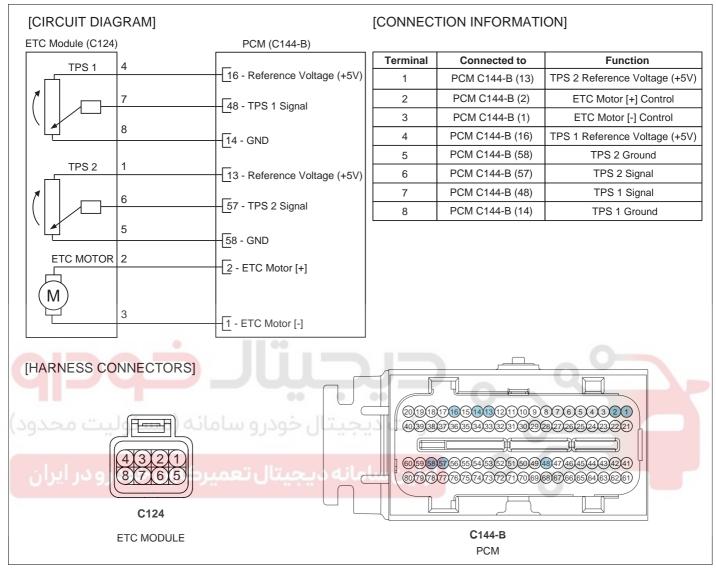
The Electronic Throttle Control(ETC) system is made of the components throttle body, Throttle Position Sensor(TPS)1 & 2 and Accelerator Position Sensor(APS) 1 & 2. The throttle body contains the actuator, the throttle plate and the throttle position sensor (potentiometer), which are integrated in one housing. The actuator consists of a DC motor with a two-stage gear. The opening angle of the throttle valve is detected by the throttle position sensor which is mounted on the throttle body. And it provides feedback to the PCM to control the throttle motor in order to control the throttle valve opening angle properly in response to the driving condition.

DTC DESCRIPTION E4033126

If power management mode is recognized under detecting condition, PCM sets P1295. And MIL(Malfunction Indication Lamp) turns on.

DTC DETECTING CONDITION E291CA5B

Item	Detecting Condition	Possible cause
DTC Strategy	This code detects if the system is in Power Management Mode	TPS Malfunction
EnableConditions	Ignition On	TPS Malfunction + MAFSMalfunction
Threshold value	Power Management Mode is active	MAP Malfunction +
DiagnosisTime	• -	TPSMalfunction • Faulty PCM
MIL On Condition	1 Driving Cycle	Tadily Folki


If Main relay has a fault(ex. Open) while the engine is running, the DTCs,P0638/P0685/P1295/P2106, can happen at the same time.

< DTC Name >

- P0638 Throttle Actuator Control Range/Performance(Bank 1)
- P0685 PCM/PCM Power Relay Control Circuit /Open
- P1295 Throttle Actuator Control System Power Management
- P2106 Throttle Actuator Control System Forced Limited Power

FL -553

SCHEMATIC DIAGRAM EC4EE

UFBG236A

MONITOR SCANTOOL DATA EFOFB6EC

- Connect scantool to DLC(Data Link Connector)
- IG "ON" & Monitor that any different DTC(Diagnostic Trouble Code) is existed. (There will be at least one more DTC which causes this DTC P1295 to retrieve)
- 3. If any of the DTCs listed above are stored, repair those DTCs first, the perform ETS initialization before troubleshooting P1295.
- 4. Is the same DTC occurred?

Substitute with a known-good PCM and check for proper operation. If the problem is corrected,replace PCM and then go to "Verification of Vehicle Repair" procedure.

FL -554 FUEL SYSTEM

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM.

Before or after testing PCM on the vehicle, use this function before reusing the PCM

Go to "Verification of Vehicle Repair" procedure.

Procedure of ETS Initialization

- 1. Erase the trouble codes on PCM
- 2. Turn the ignition key off and keep this condition until the main relay is turned off.(10 sec.)
- 3. Turn ignition key on more than 1second to record the throttle motor position on the EEPROM

VERIFICATION OF VEHICLE REPAIR E939B649

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC

Go to the applicable troubleshooting procedure.

FL -555

DTC P1523 ETC (ELECTRONIC THROTTLE CONTROL) SYSTEM MALFUNCTION - THROTTLE VALVE STUCK

COMPONENT LOCATION ECFF7C8F

Refer to DTC P1295.

GENERAL DESCRIPTION E546A573

Refer to DTC P1295.

DTC DESCRIPTION E9993ACE

Checking throttle valve return state, under detecting condition, if an output signal is within the threshold value for more than designated time, PCM sets P1523.

DTC DETECTING CONDITION E9648B18

Item	Detecting Condition	Possible cause
DTC Strategy	Monitor throttle valve return state	
EnableConditions	 ETC Power Control Mode TPS 1 & 2 = normal Sensor Supply voltage = Normal 	Carbon in throttle
Threshold value	 The throttle did not return to default range within 1 to 4 seconds of turning off. That is, (TPS1's signal > 0.9V AND TPS1's signal < 1.85V) or (TPS2's 	Broken Throttle return springthrottle stickythrottle icy
خودرو در ایران	signal < 1.85V AND TPS2's signal > 0.9V) when the power to the ETC motor is turned off.	• PCM
DiagnosisTime	Continuous	
MIL On Condition	DTC only (NO MIL ON)	

FL -556 FUEL SYSTEM

SPECIFICATION EDFDE40

Through a naminar (°)	Output voltage (V) [Vref = 5.0V]		
Throttle opening (°)	TPS1	TPS2	
0°	0.0V	5.0V	
10°	0.5V	4.5V	
20°	0.9V	4.1V	
30°	1.4V	3.6V	
40°	1.8V	3.2V	
50°	2.3V	2.7V	
60°	2.7V	2.3V	
70°	3.2V	1.8V	
80°	3.6V	1.4V	
90°	4.1V	0.9V	
100°	4.5V	0.5V	
110°	5.0V	0.0V	

SCHEMATIC DIAGRAM

Refer to DTC P1295.

SIGNAL WAVEFROM AND DATA E0C478F9

Refer to DTC P1295.

MONITOR DTC STATUS E9B7B54E

Refer to DTC P1295.

SYSTEM INSPECTION EDF59FC9

- 1. Visual Inspection
 - 1) IG "OFF".
 - 2) Check throttle valve after removing air duct.
 - Carbon deposit.
 - Throttle icy
 - Broken return spring.
 - Throttle sticky
 - 3) Is the throttle valve return O.K?

YES

Verify that throttle movement is not obstructed and perform ETS Initialization as follows and then, go to "Verification of Vehicle Repair" procedure.

NO

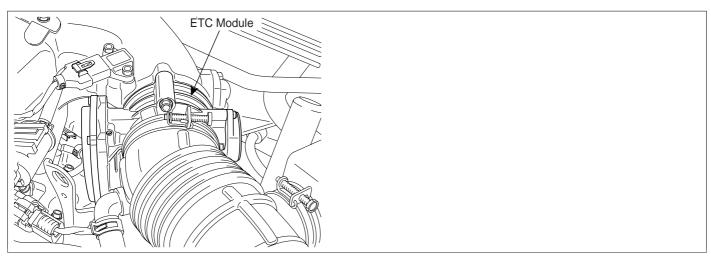
FL -557

Repair or replace as necessary and then, do ETS Initialization" as follows. then, go to "Verification of Vehicle Repair" procedure.

Procedure of ETS Initialization

- 1. Erase the trouble codes on PCM
- 2. Turn the ignition key off and keep this condition until the main relay is turned off.(10 sec.)
- 3. Turn ignition key on more than 1second to record the throttle motor position on the EEPROM

VERIFICATION OF VEHICLE REPAIR ECB7F773


Refer to DTC P1295.

FL -558 FUEL SYSTEM

DTC P2104 ETC (ELECTRONIC THROTTLE CONTROL) SYSTEM MALFUNCTION - FORCED IDLE

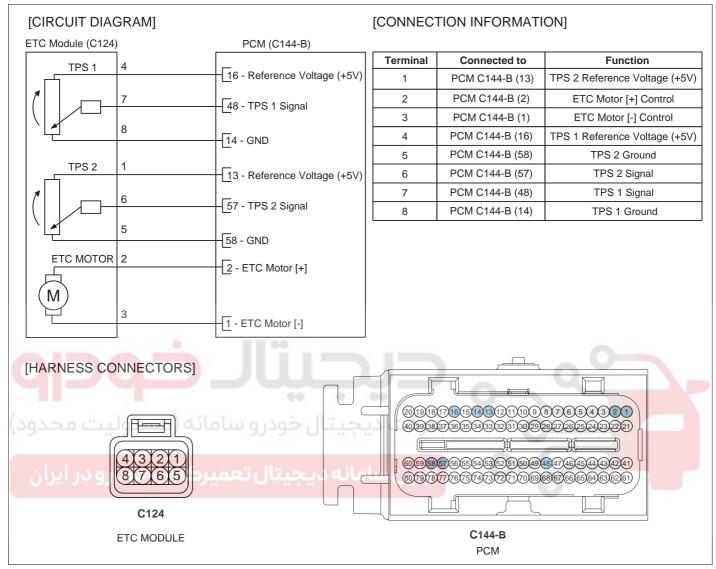
COMPONENT LOCATION E2BCC8EF

SGHFL7316N

GENERAL DESCRIPTION EEE033CF

The Electronic Throttle Control(ETC) system is made of the components throttle body, Throttle Position Sensor(TPS)1 & 2 and Accelerator Position Sensor(APS) 1 & 2. The throttle body contains the actuator, the throttle plate and the throttle position sensor (potentiometer), which are integrated in one housing. The actuator consists of a DC motor with a two-stage gear. The opening angle of the throttle valve is detected by the throttle position sensor which is mounted on the throttle body. And it provides feedback to the PCM to control the throttle motor in order to control the throttle valve opening angle properly in response to the driving condition.

DTC DESCRIPTION E0061525


PCM recognizes vehicle state as forced idle under detecting condition, and sets P2104. MIL(Malfunction Indication Lamp) turns on.

DTC DETECTING CONDITION E24A8CAF

Item	Detecting Condition	Possible cause
DTC Strategy	This code detects if the system is in Forced Idle Mode	Faulty APS
EnableConditions	• Ignition "ON"	Faulty APS+BrakeFaulty APS + Vehicle
Threshold value	Forced Idle Mode is active	speed sensor
DiagnosisTime	• -	 Faulty APS + Vehicle speed sensor + Brake
MIL On Condition	1 Driving Cycles	• Faulty PCM

FL -559

SCHEMATIC DIAGRAM E

UFBG236A

MONITOR SCANTOOL DATA E1C69466

- Connect scantool to DLC(Data Link Connector)
- IG "ON" & Monitor that any different DTC(Diagnostic Trouble Code) is existed. (There will be at least one more DTC which causes this DTC P2104 to retrieve)
- P2104 will be stored in addition to related ETS codes.
 Repair the cause of the related codes and perform ETS initialization before troubleshooting P2104.
- 4. Is the same DTC occurred?

Substitute with a known-good PCM and check for proper operation. If the problem is corrected,replace PCM and then go to "Verification of Vehicle Repair" procedure.

FL -560 FUEL SYSTEM

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM.

Before or after testing PCM on the vehicle, use this function before reusing the PCM

Go to "Verification of Vehicle Repair" procedure.

Procedure of ETS Initialization

- 1. Erase the trouble codes on PCM
- 2. Turn the ignition key off and keep this condition until the main relay is turned off.(10 sec.)
- 3. Turn ignition key on more than 1second to record the throttle motor position on the EEPROM

VERIFICATION OF VEHICLE REPAIR E6A5D243

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC

Go to the applicable troubleshooting procedure.

FL -561

DTC P2105 ETC (ELECTRONIC THROTTLE CONTROL) SYSTEM MALFUNCTION - FORCED ENGINE SHUTDOWN

COMPONENT LOCATION ECOB635F

Refer to DTC P2104.

GENERAL DESCRIPTION E8EC74B9

Refer to DTC P2104.

DTC DESCRIPTION EE469369

If PCM recognizes vehicle state as forced engine shutdown under detecting condition, it sets P2105 and then MIL(Malfunction Indication Lamp) turns on.

DTC DETECTING CONDITION F4488136

Item	Detecting Condition	Possible cause
DTC Strategy	This code detects if the system is in Forced Engine Shutdown Mode	0
EnableConditions	• Ignition "ON"	• Faulty AFS+MAPS+ETS
Threshold value	Forced Engine Shutdown Mode Active	Faulty PCM
DiagnosisTime	شرکت دیجیتال خودر و سامانه (مس	
MIL On Condition	1 Driving Cycle	

SCHEMATIC DIAGRAM E9D1885D

Refer to DTC P2104.

MONITOR SCANTOOL DATA EODD162E

Refer to DTC P2104.

VERIFICATION OF VEHICLE REPAIR EDCB0374

Refer to DTC P2104.

FL -562 FUEL SYSTEM

DTC P2106 ETC (ELECTRONIC THROTTLE CONTROL) SYSTEM MALFUNCTION - FORCED LIMITED POWER

COMPONENT LOCATION E32D3049

Refer to DTC P2104.

GENERAL DESCRIPTION EF1AE33C

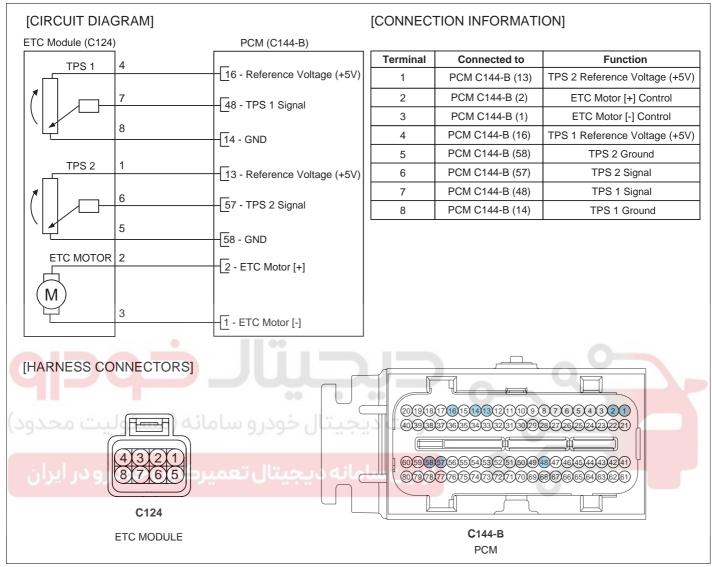
Refer to DTC P2104.

DTC DESCRIPTION EE48C119

If PCM recognizes vehicle state as forced limited power mode under detecting condition, it sets P2106 and then MIL(Malfunction Indication Lamp) turns on.

DTC DETECTING CONDITION F9F07917

Item	Detecting Condition	Possible cause
DTC Strategy	This code detects if the system is in Limit Performance Mode	Faulty APS Faulty APS+Brake
EnableConditions	• Ignition "ON"	Faulty APS + Vehicle
Threshold value	Limit Performance Mode is active	speed sensor • Faulty APS + Vehicle speed
DiagnosisTime	شرکت دیجیتال خودر و سامانه (مس	sensor + Brake
MIL On Condition	1 Driving Cycle	Faulty PCM


If Main relay has a fault(ex. Open) while the engine is running, the DTCs,P0638/P0685/P1295/P2106, can happen at the same time.

< DTC Name >

- P0638 Throttle Actuator Control Range/Performance(Bank 1)
- P0685 PCM/PCM Power Relay Control Circuit /Open
- P1295 Throttle Actuator Control System Power Management
- P2106 Throttle Actuator Control System Forced Limited Power

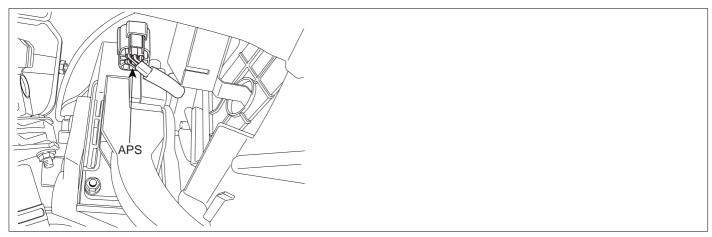
FL -563

SCHEMATIC DIAGRAM E9EEBF

UFBG236A

MONITOR SCANTOOL DATA EDEF416D

Refer to DTC P2104.


VERIFICATION OF VEHICLE REPAIR ED20D7DA

Refer to DTC P2104.

FL -564 FUEL SYSTEM

DTC P2122 THROTTLE/PEDAL POSITION SENSOR/SWITCH "D" CIRCUIT LOW INPUT

COMPONENT LOCATION E95E15B8

SGHFL7339N

GENERAL DESCRIPTION

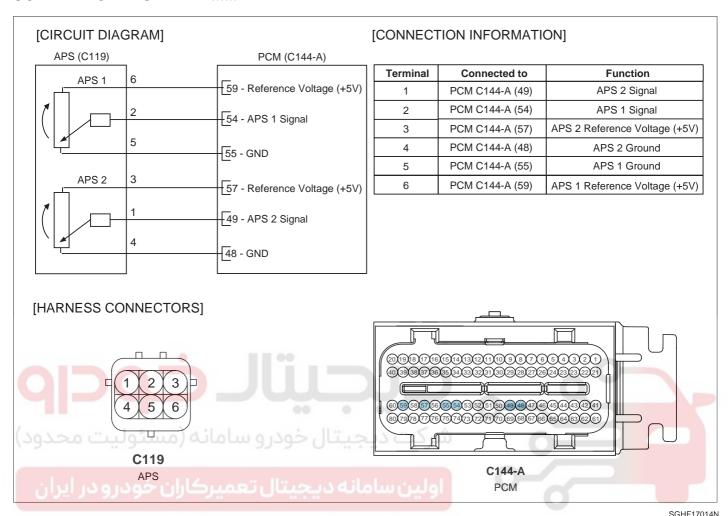
44DF2C

The Electronic Throttle Control(ETC) system is made of the components throttle body, Throttle Position Sensor(TPS) 1 & 2 and Accelerator Position Sensor(APS) 1 & 2. The APS is mounted in the accelerator pedal to detect the opening angle of the accelerator pedal. It has 2 sensors to detect the accelerator position and a malfunction of the accelerator position sensor. The PCM judges the current opening angle of the accelerator pedal from APS1 & 2, and the PCM controls the throttle motor based on these signals.

DTC DESCRIPTION E8081364

Checking output signals from APS 1, under detecting condition, if output signals are below the threshold, PCM sets P2122. MIL(Malfunction Indication Lamp) turns on.

DTC DETECTING CONDITION E84E0A6A


Item	Detecting Condition	Possible Cause
DTC Strategy	This code detects a continuous short to ground or open in either the circuit or the sensor (0-100%)	Poor connection Open or short to ground
EnableConditions	Ignition "ON"	in Power circuit
Threshold	• APS1 0.125V	Open or short to ground in Signal Circuit
Diagnosis Time	Continuous	Faulty APS
MIL On Condition	1 Driving Cycle	Faulty PCM

SPECIFICATION E0097826

Pedal Position	Output Voltage(V) [Vref = 5.0V]	
redai Fosition	APS1	APS2
C.T	0.7 ~ 0.8V	0.275 ~ 0.475V
W.O.T	3.8 ~ 4.4V	1.75 ~ 2.35V

FL -565

SCHEMATIC DIAGRAM

SIGNAL WAVEFROM AND DATA E831F377

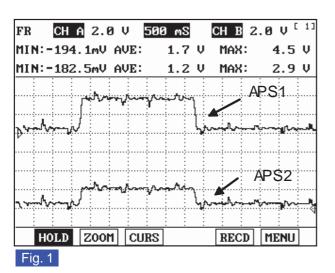


Fig. 1 : This is a signal waveform of APS 1 & 2 which shows that APS 2 increases voltage just half of APS 1 voltage increase when accelleration.

EGRF970A

FL -566 FUEL SYSTEM

MONITOR DTC STATUS E05EE0F.

- 1. Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu
 - 4) Read "DTC Status" parameter.

Go to "Terminal and connector inspection" procedure.

NO

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

TERMINAL AND CONNECTOR INSPECTION E91877FC

- 1. Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- 2. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

Repair as necessary and go to "Verification of Vehicle Repair" procedure

NO

FL -567

Go to " Power Circuit Inspection " procedure.

POWER CIRCUIT INSPECTION E348902

- 1. IG "OFF" and disconnect APS connector.
- 2. IG "ON" & ENG "OFF"
- 3. Measure voltage between harness terminal 6 of APS and chassis ground.

Specification: Approx. 5V

4. Is the measured voltage within specification?

Go to "Signal Circuit Inspection" procedure.

NO

Repair or replace as necessary and then, go to "Verification of Vehicle Repair" procedure.

SIGNAL CIRCUIT INSPECTION

EC9B3FBC

- 1. Check short to ground in harness
 - 1) IG "OFF".
 - 2) Disconnect APS & PCM connector.
 - 3) Measure resistance between terminal 2 of APS harness connector and chassis ground.
 - 4) Measure resistance between terminal 2 and 4 of APS harness connector.
 - 5) Measure resistance between terminal 2 and 5 of APS harness connector.

Specification: Infinite

6) Is the measured resistance within specification?

Go to "Check open in harness" as follows.

NO

Repair or replace as necessary and then, go to "Verification of Vehicle Repair" procedure.

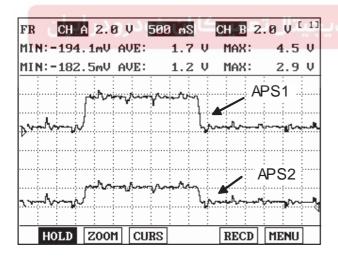
- 2. Check open in harness
 - 1) IG "OFF"
 - 2) Disconnect "APS" and "PCM" connector.
 - 3) Measure resistance between terminal 2 of APS harness connector and terminal 54 of PCM harness connector(C144-A).

FL -568 FUEL SYSTEM

Specification: Approx. below 1

4) Is the measured resistance within in specification?

Go to "Component Inspection" procedure.


Repair or replace as necessary and then, go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION ED7BB8AD

- Check APS
 - IG "ON" & ENG "OFF".
 - Measure signal waveform of APS by pressing and depressing accelerator pedal.

SPECIFICATION:

Pedal Position	Output Voltage(V) [Vref = 5.0V]	
redai Fosition	APS1	APS2
C,T	0.7 ~ 0.8V	0.275 ~ 0.475V
W.O.T	3.8 ~ 4.4V	1.75 ~ 2.35V

EGRF975A

3) Is the measured signal waveform O.K?

YES

Substitute with a known-good PCM and check for proper operation. If the problem is corrected,replace PCM and then go to "Verification of Vehicle Repair" procedure.

NOTE

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM.

Before or after testing PCM on the vehicle, use this function before reusing the PCM

FL -569

Substitute with a known-good APS and check for proper operation. If the problem is corrected,replace APS and then go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR ETAC31FB

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC

NO

Go to the applicable troubleshooting procedure.

شرکت دیجیتال خودرو سامانه (مسئولیت محدود)

اولین سامانه دیجیتال تعمیرکاران خودرو در ایران

FL -570 FUEL SYSTEM

DTC P2123 THROTTLE/PEDAL POSITION SENSOR/SWITCH "D" CIRCUIT HIGH INPUT

COMPONENT LOCATION EOFF09D9

Refer to DTC P2122.

GENERAL DESCRIPTION EF61047B

Refer to DTC P2122.

DTC DESCRIPTION ED5EDE7D

Checking output signals from APS 1, under detecting condition, if output signals are above the threshold, PCM sets P2123. MIL(Malfunction Indication Lamp) turns on.

DTC DETECTING CONDITION E1559397

Item	Detecting Condition	Possible Cause
DTC Strategy	This code detects a short to high in either the circuit or the sensor	Poor connection
EnableConditions	• Ignition "ON"	Short to battery in signal circuit.
Threshold	• APS1 4.5V	Open in Ground Circuit.
Diagnosis Time	Continuous	Faulty APS Faulty PCM
MIL On Condition	1 Driving Cycle	

SPECIFICATION EEDSFAFC

Pedal Position	Output Voltage(V) [Vref = 5.0V]	
redai Fosition	APS1	APS2
С.Т	0.7 ~ 0.8V	0.275 ~ 0.475V
W.O.T	3.8 ~ 4.4V	1.75 ~ 2.35V

SCHEMATIC DIAGRAM E467907C

Refer to DTC P2122.

SIGNAL WAVEFROM AND DATA E171802A

Refer to DTC P2122.

MONITOR DTC STATUS EE8FDA11

Refer to DTC P2122.

TERMINAL AND CONNECTOR INSPECTION E1D2B3AA

Refer to DTC P2122.

FL -571

SIGNAL CIRCUIT INSPECTION

- 1. Check short to battery in harness
 - 1) IG "OFF".
 - 2) Disconnect APS and PCM connector.
 - 3) Measure resistance between terminal 2 and 3 of APS harness connector.
 - Measure resistance between terminal 2 and 6 of APS harness connector.

Specification: Infinite

5) Is the measured resistance within specification?

Go to "Ground Circuit Inspection" procedure.

NO

Repair or replace as necessary and then, go to "Verification of Vehicle Repair" procedure.

GROUND CIRCUIT INSPECTION ED4DC570

- 1. Check open in harness
 - 1) IG "OFF".
 - 2) Disconnect APS connector and then turn the ignition ON.
 - 3) Measure voltage between terminal 6 of APS harness connector and chassis ground.(Fig. A)
 - 4) Measure voltage between terminal 6 and 5 of APS harness connector.(Fig. B)

Specification: Fig. "A" - Fig. "B" = approx. below. 200mV.

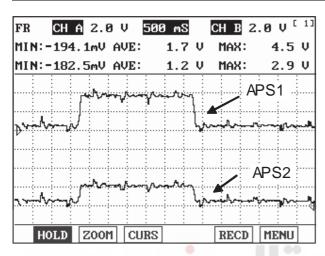
5) Is the measured voltage within specification?

YES

Go to "Component Inspection" procedure.

NO

Repair or replace contact resistance or open in harness and then, go to "Verification of VehicleRepair" procedure.


COMPONENT INSPECTION EFB6DDB6

- 1. Check APS
 - 1) Ignition "ON" & ENG "OFF".
 - 2) Measure waveform of APS by pressing and depressing accelerator pedal with scantool.

FL -572 FUEL SYSTEM

SPECIFICATION:

Pedal Position	Output Voltage(V) [Vref = 5.0V]	
redai Fosition	APS1	APS2
C.T	0.7 ~ 0.8V	0.275 ~ 0.475V
W.O.T	3.8 ~ 4.4V	1.75 ~ 2.35V

EGRF975A

3) Is the measured signal waveform O.K?

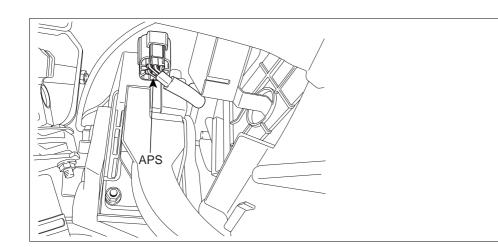
YES

Substitute with a known-good PCM and check for proper operation. If the problem is corrected,replace PCM and then go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM.

Before or after testing PCM on the vehicle, use this function before reusing the PCM

Substitute with a known-good APS and check for proper operation. If the problem is corrected,replace APS and then go to "Verification of Vehicle Repair" procedure.


VERIFICATION OF VEHICLE REPAIR EDGESEDS

Refer to DTC P2122.

FL -573

DTC P2127 THROTTLE/PEDAL POSITION SENSOR/SWITCH "E" CIRCUIT LOW INPUT

COMPONENT LOCATION E3D00B96

SGHFL7339N

GENERAL DESCRIPTION

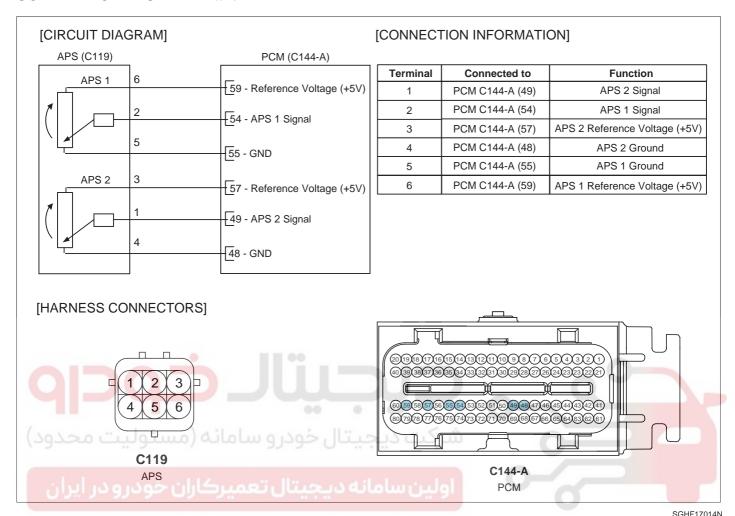
E0903269

The Electronic Throttle Control(ETC) system is made of the components throttle body, Throttle Position Sensor(TPS) 1 & 2 and Accelerator Position Sensor(APS) 1 & 2. The APS is mounted in the accelerator pedal to detect the opening angle of the accelerator pedal. It has 2 sensors to detect the accelerator position and a malfunction of the accelerator position sensor. The PCM judges the current opening angle of the accelerator pedal from APS1 & 2, and the PCM controls the throttle motor based on these signals.

DTC DESCRIPTION E5511957

Checking output signals from APS 2, under detecting condition, if output signals are detected below the threshold, PCM sets P2127. MIL(Malfunction Indication Lamp) turns on.

DTC DETECTING CONDITION EE39DC1D


Item	Detecting Condition	Possible Cause
DTC Strategy	This code detects a continuous short to ground or open in either the circuit or the sensor	Poor connection Open or short to ground
EnableConditions	Ignition "ON"	in Power circuit.
Threshold	• APS2 0.125V	Open or short to ground in signal circuit.
Diagnosis Time	agnosis Time • Contineous • Faulty APS	
MIL On Condition	1 Driving Cycle	Faulty PCM

SPECIFICATION E7AF66F6

Pedal Position	Output Voltage(V) [Vref = 5.0V]	
redai Fosition	APS1	APS2
С.Т	0.7 ~ 0.8V	0.275 ~ 0.475V
W.O.T	3.8 ~ 4.4V	1.75 ~ 2.35V

FL -574 FUEL SYSTEM

SCHEMATIC DIAGRAM E50F15FF

SIGNAL WAVEFROM AND DATA EA85CA33

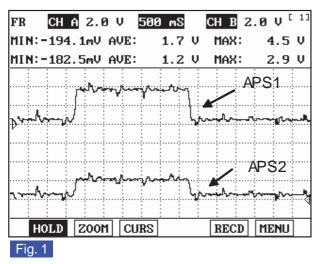


Fig. 1 : This is a signal waveform of APS 1 & 2 which shows that APS 2 increases voltage just half of APS 1 voltage increase when accelleration.

EGRF970A

FL -575

MONITOR DTC STATUS E74D077

- 1. Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu
 - 4) Read "DTC Status" parameter.

Go to "Terminal and connector inspection" procedure.

NO

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

TERMINAL AND CONNECTOR INSPECTION E9AC9AF7

- 1. Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- 2. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

Repair as necessary and go to "Verification of Vehicle Repair" procedure

NO

FL -576 FUEL SYSTEM

Go to "Power Circuit Inspection " procedure.

POWER CIRCUIT INSPECTION EF2387B1

- 1. IG "OFF".
- 2. Disconnect APS connector.
- 3. IG "ON" & ENG "OFF".
- 4. Measure voltage between termial 3 of APS harness connector and chassis ground.

Specification: Approx. 5V

5. Is the measured voltage within specification ?

YES

Go to "Signal Circuit Inspection" procedure.

NO

Repair or replace as necessary and then, go to 'Verification of Vehicle Repair" procedure.

SIGNAL CIRCUIT INSPECTION ED70C1E8

- Check short to ground in harness
 - 1) IG "OFF".
 - 2) Disconnect APS and PCM connector.
 - 3) Measure resistance between terminal 1 of APS harness connector and chassis ground.
 - 4) Measure resistance between terminal 1 and 4 of APS harness connector.
 - 5) Measure resistance between terminal 1 and 5 of APS harness connector.

Specification: Infinite

6) Is the measured resistance within specification?

YES

Go to "Check open in harness" as follows.

NO

Repair or replace as necessary and then, go to "Verification of Vehicle Repair" procedure.

- Check open in harness
 - 1) IG "OFF".
 - 2) Disconnect APS and PCM connector.
 - 3) Measure resistance between terminal 1 of APS harness connector and terminal 49 of PCM harness connector(C144-A).

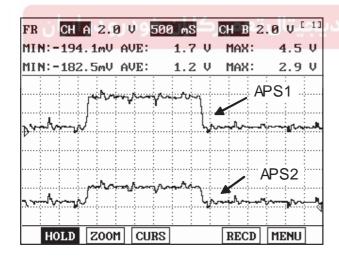
FL -577

Specification: Approx. below 1

4) Is the measured resistance within specification?

Go to "Component Inspection" procedure.

Repair or replace as necessary and then, go to "Verification of Vehicle Repair" procedure.


COMPONENT INSPECTION E4EA03A9

- Check APS
 - 1) Ignition "ON" & ENG "OFF".

2) Measure waveform of APS by pressing and depressing accelerator pedal with scantool.

SPECIFICATION:

Pedal Position	Output Voltage(V) [Vref = 5.0V]	
Pedal Position	APS1	APS2
Ç.T	0.7 ~ 0.8V	0.275 ~ 0.475V
W.O.T	3.8 ~ 4.4V	1.75 ~ 2.35V

EGRF975A

3) Is the measured signal waveform O.K?

YES

Substitute with a known-good PCM and check for proper operation. If the problem is corrected,replace PCM and then go to "Verification of Vehicle Repair" procedure.

NOTE

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM.

Before or after testing PCM on the vehicle, use this function before reusing the PCM

FL -578 FUEL SYSTEM

Substitute with a known-good APS and check for proper operation. If the problem is corrected,replace APS and then go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR E9D80636

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC

NO

Go to the applicable troubleshooting procedure.

شرکت دیجیتال خودرو سامانه (مسئولیت محدود)

ولین سامانه دیجیتال تعمیرکاران خودرو در ایران

FL -579

DTC P2128 THROTTLE/PEDAL POSITION SENSOR/SWITCH "E" CIRCUIT HIGH INPUT

COMPONENT LOCATION E550213B

Refer to DTC P2127.

GENERAL DESCRIPTION EBDB1018

Refer to DTC P2127.

DTC DESCRIPTION E7C91BDB

Checking output signals from APS 2, under detecting condition, if output signals are above the threshold, PCM sets P2128. MIL(Malfunction Indication Lamp) turns on.

DTC DETECTING CONDITION EFCC64FA

Item	Detecting Condition	Possible Cause
DTC Strategy	This code detects a short to high in either the circuit or the sensor	Poor connection
EnableConditions	• Ignition "ON"	 Short to battery in Signal Circuit
Threshold	• APS2 > 3V	Open in Ground Circuit
Diagnosis Time	Contineous	Faulty APSFaulty PCM
MIL On Condition	1 Driving Cycle	
فودرو در ایران	اولین سامانه دیجیتال تعمیرکاران ۱	

SPECIFICATION EE3E4B30

Pedal Position	Output Voltage(V) [Vref = 5.0V]	
redai Fosition	APS1	APS2
C.T	0.7 ~ 0.8V	0.275 ~ 0.475V
W.O.T	3.8 ~ 4.4V	1.75 ~ 2.35V

SCHEMATIC DIAGRAM E678401F

Refer to DTC P2127.

SIGNAL WAVEFROM AND DATA E6549058

Refer to DTC P2127.

MONITOR DTC STATUS E93C65A0

Refer to DTC P2127.

TERMINAL AND CONNECTOR INSPECTION EF536B86

Refer to DTC P2127.

FL -580 FUEL SYSTEM

SIGNAL CIRCUIT INSPECTION EFF8FD53

- 1. Check short to battery in harness
 - 1) IG "OFF".
 - 2) Disconnect APS and PCM connector.
 - 3) Measure resistance between terminal 1 and 3 of APS harness connector.
 - 4) Measure resistance between terminal 1 and 6 of APS harness connector.

Specification: Infinite

5) Is the measured reisistance within specification?

YES

Go to "Ground Circuit Inpsection" procedure.

NO

Repair or replace as necessary and then, go to "Verification of Vehicle Repair" procedure.

GROUND CIRCUIT INSPECTION EA66B99F

- Check open in harness
 - 1) IG "OFF"
 - 2) Disconnect APS connector and then turn the ignition ON.
 - 3) Measure voltage between terminal 3 of APS harness connector and chassis ground.(Fig. A)
 - 4) Measure voltage between terminal 3 and 4 of APS harness connector.(Fig. B)

Specification: Fig. "A" - Fig. "B" = Approx. below 200mV

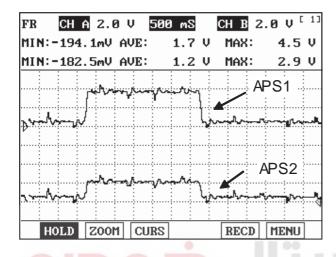
5) Is the measured voltage within specification?

YES

Go to "Component Inspection" procedure.

NO

Repair or replace as necessary and then, go to "Verification of Vehicle Repair" procedure.


COMPONENT INSPECTION E390D0FB

- 1. Check APS
 - 1) Ignition "ON" & ENG "OFF".
 - 2) Measure waveform of APS by pressing and depressing accelerator pedal with scantool.

FL -581

SPECIFICATION:

Dodal Desition	Output Voltage(V) [Vref = 5.0V]	
Pedal Position	APS1	APS2
С.Т	0.7 ~ 0.8V	0.275 ~ 0.475V
W.O.T	3.8 ~ 4.4V	1.75 ~ 2.35V

EGRF975A

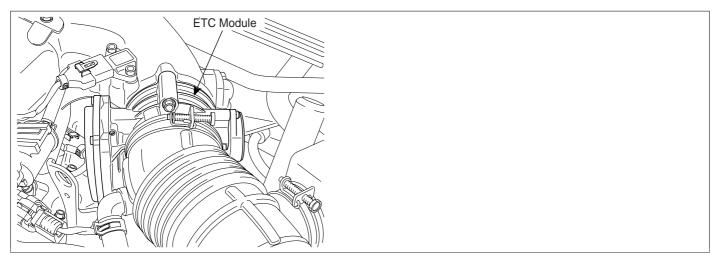
3) Is the measured signal waveform O.K?

Substitute with a known-good PCM and check for proper operation. If the problem is corrected, replace PCM and then go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM.

Before or after testing PCM on the vehicle, use this function before reusing the PCM

Substitute with a known-good APS and check for proper operation. If the problem is corrected,replace APS and then go to "Verification of Vehicle Repair" procedure.


VERIFICATION OF VEHICLE REPAIR E0211E30

Refer to DTC P2127.

FL -582 FUEL SYSTEM

DTC P2135 THROTTLE/PEDAL POSITION SENSOR/SWITCH "A" / "B" VOLTAGE CORRELATION

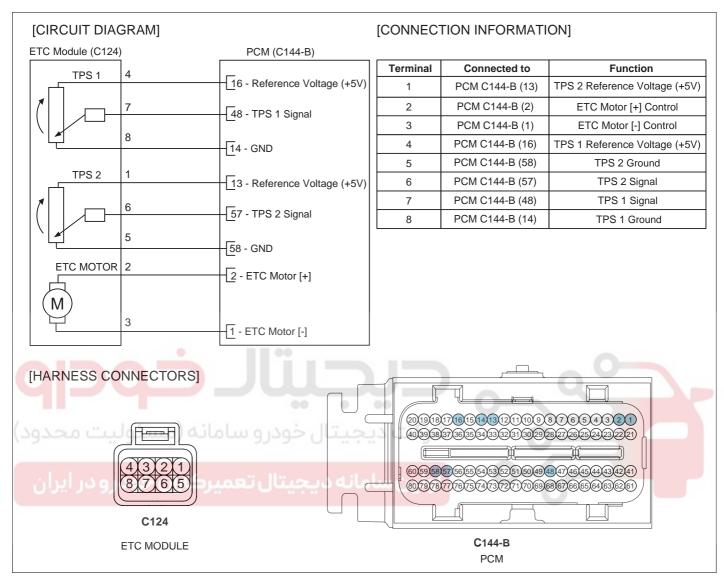
COMPONENT LOCATION EBFESE7F

SGHFL7316N

GENERAL DESCRIPTION E81DE7B5

The Electronic Throttle Control(ETC) system is made of the components throttle body, Throttle Position Sensor(TPS)1 & 2 and Accelerator Position Sensor(APS) 1 & 2. TPS1 & 2 are sharing the same source voltage and ground. The throttle valve opening is control by throttle motor which is controlled by Engine Control Module(PCM). The opposite position indicator shows inverted signal characteristics. TPS1 output voltage increases smoothly in proportion with the throttle valve opening angle after starting. TPS2 output voltage decreases in inverse proportion with the throttle valve opening angle after starting. TPS provides feedback to the PCM to control the throttle motor in order to control the throttle valve opening angle properly in response to the driving condition.

DTC DESCRIPTION E2DDE48F


Checking output signals from TPS 1 and 2, under detecting condition, if output signals difference between TPS1 and TPS2 are detected more than 4.5% for the specified number of times., PCM sets P2135. MIL(Malfunction Indication Lamp) turns on.

DTC DETECTING CONDITION E99C84AC

Item	Detecting Condition	Possible Cause
DTC Strategy	Determines if TPS # 1 disagrees with TPS # 2	
Enable condition	• Ignition "ON"	Poor connection
threshold value	Difference between average values of TPS1 and TPS2	Open or short in TPS circuitFaulty TPS
diagnosis time	Continuous	Faulty PCM
MIL ON condition	1 driving cycle	

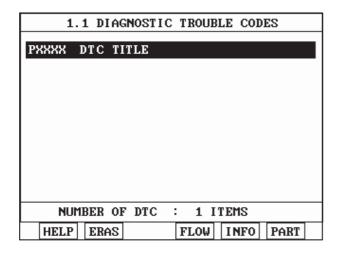
FL -583

SCHEMATIC DIAGRAM ECA9185A

UFBG236A

FL -584 FUEL SYSTEM

SPECIFICATION E15B5E68


Thurstle on animal (°)	Output voltage(V) [Vref=5.0V]	
Throttle opening (°)	TPS1	TPS2
0°	0.0V	5.0V
10°	0.5V	4.5V
20°	0.9V	4.1V
30°	1.4V	3.6V
40°	1.8V	3.2V
50°	2.3V	2.7V
60°	2.7V	2.3V
70°	3.2V	1.8V
80°	3.6V	1.4V
90°	4.1V	0.9V
100°	4.5V	0.5V
110°	5.0V	0.0V

MONITOR DTC STATUS E91C2C74

- Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu

PXXXX DTC TITLE

4) Read "DTC Status" parameter.

1.MIL STATUS: ON/OFF
2.DTC STATUS: PRESENT/HISTORY
3.DIAG.STATUS: DIAGNOSIS FINISHED!

SGHFL7305L

5) Is "Present" Fault displayed?

Go to "Terminal and connector inspection" procedure.

FL -585

NO

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

TERMINAL AND CONNECTOR INSPECTION ETEOCICS

- 1. Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- 2. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

Repair as necessary and go to "Verification of Vehicle Repair" procedure

NO

Go to "Power Circuit Inspection " procedure

POWER CIRCUIT INSPECTION EEGEE56F

- 1. IG "OFF".
- 2. Disconnect TPS connector.
- 3. IG "ON" & ENG "OFF".
- 4. Measure voltage between terminal 1 of TPS harness connector and chassis ground.
- 5. Measure voltage between terminal 4 of TPS harness connector and chassis ground.

Specification: Approx. 5V

6. Is the measured voltage within specification?

YES

Go to "Signal Circuit Inspection" procedure.

NO

Repair or replace as necessary and then, go to "Verification of Vehicle Repair" procedure.

SIGNAL CIRCUIT INSPECTION E63432D4

- 1. IG "OFF".
- 2. Disconnect TPS & PCM connector.
- 3. Measure resistance between terminal 6 and 7 of TPS harness connector.

WWW.DIGITALKHODRO.COM

021 62 99 92 92

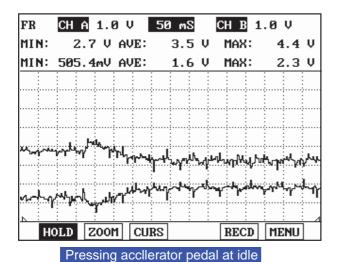
FL -586 FUEL SYSTEM

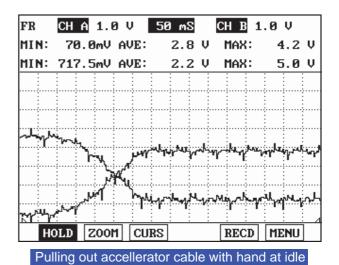
Specification: Infinite

4. Is the measured resistance within specification?

Go to "Component Inspection" procedure.

Repair or replace as necessary and then, go to "Verification of Vehicle Repair" procedure.


COMPONENT INSPECTION ED914D8A


- 1. Check TPS
 - 1) Ignition "ON" & ENG "OFF".
 - 2) Monitor signal waveform of TPS by stepping on and off the accelerator padel on scantool

SPECIFICATION:

Through an arrival ()	Output voltage(V) [Vref=5.0V]	
Throttle opening (°)	TPS1	TPS2
0°	0.0V	5.0V
10°	0.5V	4.5V
20°	0.9V	4.1V
30°	1.4V	3.6V
40°	1.8V	3.2V
50°	2.3V	2.7V
60°	2.7V 3.2V 3.6V	2.3V
70°		1.8V
80°		1.4V
90°	4.1V	0.9V
100°	4.5V	0.5V
110°	5.0V	0.0V

FL -587

EGRF986A

3) Is the measured signal waveform O.K?

YES

Substitute with a known-good PCM and check for proper operation. If the problem is corrected,replace PCM and then go to "Verification of Vehicle Repair" procedure.

NOTE

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM.

Before or after testing PCM on the vehicle, use this function before reusing the PCM

NO

Substitute with a known-good TPS and check for proper operation. If the problem is corrected,replace TPS and then go to "Verification of Vehicle Repair" procedure. (After replacing ETC, do initialization of ETC as follows)

PROCEDURE OF ETS INITIALIZATION

- 1. Erase the trouble codes on PCM
- 2. Turn the ignition key off and keep this condition until the main relay is turned off.(10 sec.)
- 3. Turn ignition key on more than 1second to record the throttle motor position on the EEPROM

VERIFICATION OF VEHICLE REPAIR E663D092

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

FL -588 FUEL SYSTEM

YES

System performing to specification at this time. Clear the DTC

Go to the applicable troubleshooting procedure.

FL -589

DTC P2138 THROTTLE/PEDAL POSITION SENSOR/SWITCH "D" / "E" VOLTAGE CORRELATION

COMPONENT LOCATION E5AF6EAC

Refer to DTC P2135.

GENERAL DESCRIPTION ED7B16BE

Refer to DTC P2135.

DTC DESCRIPTION E60189B5

Checking output signals from APS 1 and 2, under detecting condition, if output signals difference between APS 1 and 2 are detected more than 4.5% for the specified number of times., PCM sets P2138. MIL(Malfunction Indication Lamp) turns on.

DTC DETECTING CONDITION EAD4E293

Item	Detecting Condition	Possible Cause
DTC Strategy	 This code detects a correlation error between APS 1 and APS 2 	0
EnableConditions	• Ignition "ON"	Poor connection
(Sg. Threshold Jg. 1	Difference between APS1 and APS2 Normalized values 4.5%	 Open or short in APS Circuit Faulty APS Faulty PCM
Diagnosis Time	Contineous	
MIL On Condition	1 Driving Cycle	

SPECIFICATION ED6106A0

Pedal Pesition	Output Voltage(V) [Vref = 5.0V]	
Pedal Position	APS1	APS2
C.T	0.7 ~ 0.8V	0.275 ~ 0.475V
W.O.T	3.8 ~ 4.4V	1.75 ~ 2.35V

SCHEMATIC DIAGRAM EA798FA9

Refer to DTC P2135.

FL -590 FUEL SYSTEM

SIGNAL WAVEFROM AND DATA EAE303

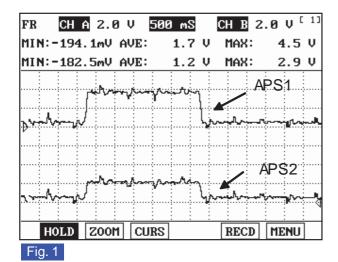


Fig. 1 : This is a signal waveform of APS 1 & 2 which shows that APS 2 increases voltage just half of APS 1 voltage increase when accelleration.

EGRF970A

MONITOR DTC STATUS

BB8473

Refer to DTC P2135.

TERMINAL AND CONNECTOR INSPECTION ETEB6B9E

Refer to DTC P2135.

POWER CIRCUIT INSPECTION EB152443

- 1. IG "OFF"
- 2. Disconnect APS connector.
- 3. IG "ON" & ENG "OFF".
- 4. Measure voltage between terminal 3 of APS harness connector and chassis ground.
- 5. Measure voltage between terminal 6 of APS harnesss connector and chassis ground.

Specification: Approx. 5V

6. Is the measured voltage within specification?

Go to "Signal Circuit Inspection" procedure.

NO

Repair or replace as necessary and then, go to "Signal Circuit Inspection" procedure.

FL -591

SIGNAL CIRCUIT INSPECTION E

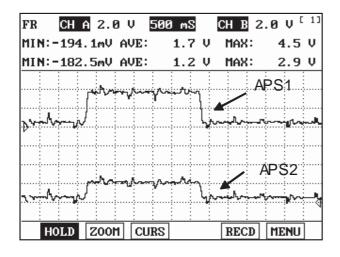
- 1. IG "OFF".
- 2. Disconnect APS and PCM connector.
- 3. Measure resistance between terminal 1 and 2 of APS harness connector.

Specification: Infinite

4. Is the measured resistance within specification?

Go to "Component Inspection" procedure.

NO


Repair or replace as necessary and then, go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION E1D3

- Check APS
 - 1) IG "ON" & ENG "OFF".
 - 2) Measure signal waveform of APS 1 and APS 2 by stepping on and off with scantool

SPECIFICATION:

Dedal Proition	Output Voltage(V) [Vref = 5.0V]	
Pedal Position	APS1	APS2
С.Т	0.7 ~ 0.8V	0.275 ~ 0.475V
W.O.T	3.8 ~ 4.4V	1.75 ~ 2.35V

EGRF986E

3) Is the measured signal waveform O.K?

YES

FL -592 FUEL SYSTEM

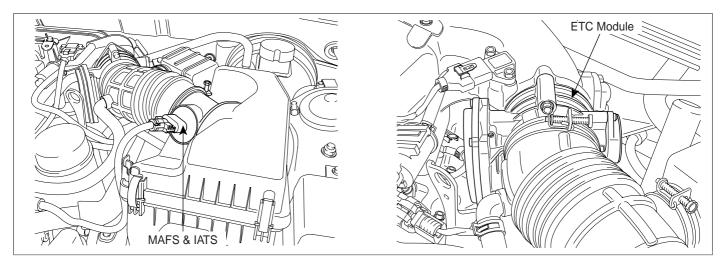
Substitute with a known-good PCM and check for proper operation. If the problem is corrected,replace PCM and then go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM.

Before or after testing PCM on the vehicle, use this function before reusing the PCM

Substitute with a known-good APS and check for proper operation. If the problem is corrected,replace APS and then go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR EATC373A


Refer to DTC P2135.

FL -593

DTC P2173 ETC (ELECTRONIC THROTTLE CONTROL) SYSTEM MALFUNCTION - HIGH AIR FLOW DETECTED

COMPONENT LOCATION EDB24460

SGHFL7340N

GENERAL DESCRIPTION EA5F41

The Electronic Throttle Control(ETC) system is made of the components throttle body, Throttle Position Sensor(TPS)1 & 2 and Accelerator Position Sensor(APS) 1 & 2. The throttle body contains the actuator, the throttle plate and the throttle position sensor (potentiometer), which are integrated in one housing. The actuator consists of a DC motor with a two-stage gear. The opening angle of the throttle valve is detected by the throttle position sensor which is mounted on the throttle body. And it provides feedback to the PCM to control the throttle motor in order to control the throttle valve opening angle properly in response to the driving condition.

DTC DESCRIPTION E9EEBC14

Comparing real intake air flow and the intake air flow calculated by ETS under detecting condition, if the air flow more than threshold value is detected for more than 19 sec., PCM sets P2173. And then MIL(Malfunction Indication Lamp) turns on.

DTC DETECTING CONDITION E8A3D448

lte	em	Detecting Condition	Possible Cause
DTC S	trategy	Monitor the measured engine airflow and the estimated airflow	
		Engine runningNo faults present	Air Leakage between TPS
Thresh-	Case 1	MAPS reading - ETC estimated airflow > 9 g/s	and MAFSaulty throttle body or
old	Case 2	Case 2 • MAFS reading - ETC estimated airflow > 7g/s intake manifold • Faulty PCM	
Diagnosis Time		Contineous (Within 20 sec.)	
MIL On Condition		1 Driving Cycle	

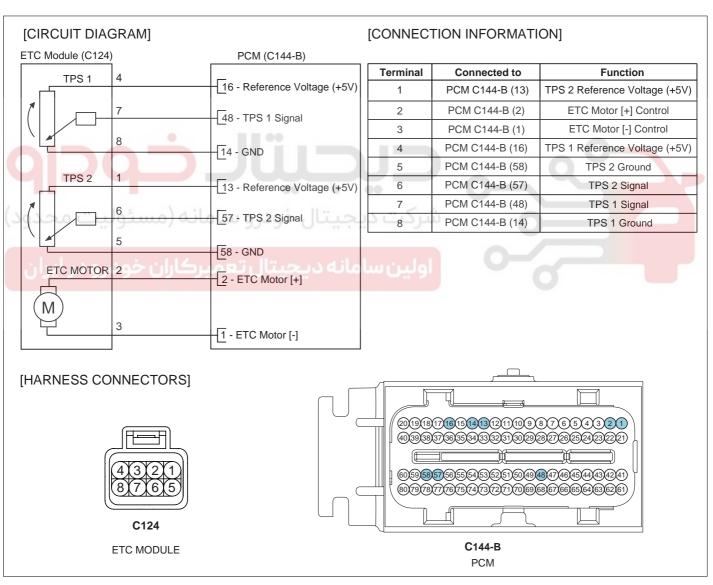
FUEL SYSTEM FL -594

SPECIFICATION E22B48CC

MAFS

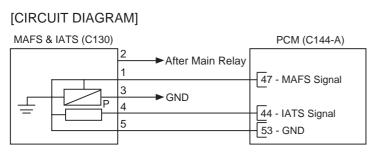
Air flow (kg/h)	Frequency (Hz)
0 kg/h	720 ~ 880 Hz
12.6 kg/h	2,595 Hz
18.0 kg/h	2,930 Hz
23.4 kg/h	3,208 Hz
32.4 kg/h	3,609 Hz
43.2 kg/h	3,975 Hz
57.6 kg/h	4,361 Hz
72.0 kg/h	4,683 Hz
108.0 kg/h	5,362 Hz
144.0 kg/h	5,885 Hz
198.0 kg/h	6,527 Hz
270.0 kg/h	7,219 Hz
360.0 kg/h	7,945 Hz
486.0 kg/h	8,736 Hz
666.0 kg/h	9,660 Hz
900.0 kg/h	10,613 Hz

TPS


ت <u>ىمىركاران خودرودر ايران</u>	Output voltage(V) [Vref=5.0V]	
Throttle opening (°)	TPS1	TPS2
0°	0.0V	5.0V
10°	0.5V	4.5V
V20°	0.9V	4.1V
30°	1.4V	3.6V
40°	1.8V	3.2V
50°	2.3V	2.7V
60°	2.7V	2.3V
70°	3.2V	1.8V
80°	3.6V	1.4V
90°	4.1V	0.9V
100°	4.5V	0.5V
110°	5.0V	0.0V

FL -595

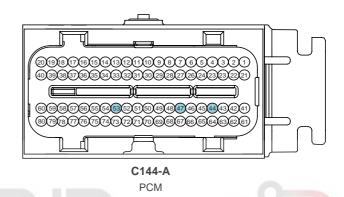
MAPS


Pressure(kPa)	Output voltage(V)
20.0kPa	0.79V
35kPa	1.382V
46.66kPa	1.84V
60kPa	2.369V
90kPa	3.75V
101.32kPa	4.00V

SCHEMATIC DIAGRAM EDE50F2F

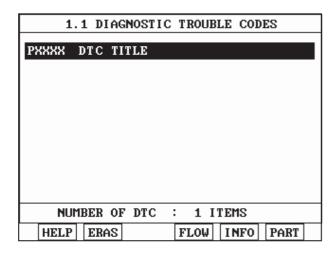
UFBG236A

FL -596 FUEL SYSTEM


[CONNECTION INFORMATION]

Terminal	Connected to	Function
1	PCM C144-A (47)	MAFS Signal
2	Main Relay Battery Voltage (B+)	
3	Chassis Ground Ground	
4	PCM C144-A (44) IATS Signal	
5	PCM C144-A (53)	Sensor Ground

[HARNESS CONNECTORS]


MAFS & IATS

SGHF17008N

MONITOR DTC STATUS E600AB22

- Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu
 - 4) Read "DTC Status" parameter.

PXXXX DTC TITLE

1.MIL STATUS: ON/OFF

2.DTC STATUS: PRESENT/HISTORY

3. DIAG. STATUS: DIAGNOSIS FINISHED!

SGHFL7305L

5) Is "Present" Fault displayed?

FL -597

Go to "System Inspection" procedure.

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

SYSTEM INSPECTION E37DC2AF

- Visual Inspection
 - 1) Check the air hose between MAFS and throttle body is torn or installation.
 - 2) Check deforamtion, crack or installation of throttle valve(body)
 - 3) Has a problem been found?

Substitute with a known-good Air hose or throttle body and check for proper operation.

If the problem is corrected, replace air hose or throttle body and then go to "Verification of Vehicle Repair" procedure.

Substitute with a known-good PCM and check for proper operation. If the problem is corrected,replace PCM and then go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM.

Before or after testing PCM on the vehicle, use this function before reusing the PCM

PROCEDURE OF ETS INITIALIZATION

- 1. Erase the trouble codes on PCM
- 2. Turn the ignition key off and keep this condition until the main relay is turned off.(10 sec.)
- 3. Turn ignition key on more than 1second to record the throttle motor position on the EEPROM

VERIFICATION OF VEHICLE REPAIR E1169B8F

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

FL -598 FUEL SYSTEM

YES

System performing to specification at this time. Clear the DTC

Go to the applicable troubleshooting procedure.

FL -599

DTC P2187 SYSTEM TOO LEAN AT IDLE (ADDITIVE) (BANK 1) DTC P2189 SYSTEM TOO LEAN AT IDLE (ADDITIVE) (BANK 2)

GENERAL DESCRIPTION E6C77FE9

In order to provide the best possible combination of drivability, fuel economy and emission control, the PCM uses a closed loop air/fuel metering system. The PCM monitors the HO2S signal voltage and adjusts fuel delivery as needed. Changes in fuel delivery will be indicated by the long-term and the short-term fuel trim values. The ideal fuel trim value is around 0%. The PCM will add fuel when the HO2S signal is indicating a lean condition. Additional fuel is indicated by fuel trim values that are above 0%. The PCM will reduce fuel when the HO2S signal is indicating a rich condition. Reduction in fuel is indicated by fuel trim values that are below 0%. The DTC relevant to fuel trim will be set when the amount reaches excessive levels because of a lean or rich condition.

DTC DESCRIPTION E21E596F

Checking the fuel trim value at idle under detecting condition, if its average exceeds the limit over certain period, PCM sets P2187/P2189. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION E22C07E4

Item	Detecting Condition	Possible cause
DTC Strategy	Monitor the fuel trim value at idle	0
EnableConditions	 Engine at operating temperature Engine running under Idle state over 5 minutes 60 (140) Engine coolant temperature 115 (239) No disabling faults (DTCs related to HO2S, purge valve,catalyst) 	Air leakageImproper fuel pressurePCV valve stuck
Threshold value	 Average of short term fuel trim > 0.8 and Average of long term fuel trim > 1.24 	Clogging of injector
DiagnosisTime	Continuous	
MIL On Condition	2 Driving Cycles	

MONITOR SCANTOOL DATA E592A2E6

- 1. Monitor DTCs related to HO2S, MAFS, MAPS, ECTS, PCSV, Injector or CVVT items with scantool.
- 2. Are related DTCs present?

Do all repairs associated with those codes before proceeding with this procedure.

Go to "System Inspection" procedure

SYSTEM INSPECTION F842C61B

- Check Air leakage
 - Visually/physically inspect the intake/exhaust system for following items

FL -600 FUEL SYSTEM

Vacuum hoses for splits, kinks and improper connections.

Throttle body gasket

Gasket between intake manifold and cylinder head

Seals between intake manifold and fuel injectors

Exhaust system between HO2S and three way catalyst for air leakage

2) Has a problem been found?

Repair or replace it which has a problem, and go to "Verification of Vehicle Repair" procedure.

Go to "Check the fuel line" as follows

- 2. Check the fuel line
 - Check the fuel line for following items

Connector connection state

Damage/ connection state for vacuum hoses connected to fuel line

Bent/ pressed/ twisted fuel line or fuel leakage

2) Has a problem been found?

YES

Repair or replace it which has a problem, and go to "Verification of Vehicle Repair" procedure.

NO

Go to "Check fuel pressure" as follows

3. Check fuel pressure

- 1. Be cautious that Fuel is explosive and an empty fuel tank can still contain explosive gases. When working on fuel system make sure to supply adequate ventilation to the work area. Do not smoke, and keep sparks and open flames away.
- 2. The fuel system remains under pressure when the engine is not running. Release fuel system pressure before disconnecting any fuel line to reduce the chance of presonal injury or fire damage to vehicle components.
- 1) IG "OFF" and disconnect Fuel Pump Relay in Junction Box.
- 2) Start the engine and wait until the engine stalls.
- 3) IG "OFF" and connect Fuel Pump Relay.
- 4) Install the fuel pressure gauge to the delivery pipe with the fuel pressure gauge adaptor.
- 5) Activate the fuel pump, and with fuel pressure applied, check that there is no fuel leakage from the pressure gauge or connection part.
- 6) Measure the fuel pressure at idle.

Specification: 374.6 ~ 384.4 kPa(3.82 ~ 3.92 kg/cmf, 54.3 ~ 55.8 psi)

7) Is the measured fuel pressure within specifications?

FL -601

YES

Go to "Component Inspection" procedure.

YES

Repair or replace according to the below table. And then, go to "Verification of Vehicle Repair"procedure.

Condition	Possible Cause
Fuel Pressure is too low	Fuel filter,fuel pressure regulator, in-tank fuel hose or the fuel pump
Fuel Pressure is too high	Fuel pressure regulator, hose or pipe

COMPONENT INSPECTION EETFCEDS

- Check PCV
 - 1) IG "OFF" and remove PCV valve from rocker cover.
 - 2) Insert a thin stick into the PCV valve from the threaded side and verify that the plunger is moving.
 - 3) Is the PCV valve normally moving?

YES

Go to "Check injector" as follows

NO

Replace it, and go to "Verification of Vehicle Repair" procedure.

- 2. Check injector for normal operation
 - 1) Start engine.
 - 2) Check for RPM drop during injector actuation test.
 - 3) Is there any cylinder with no change in RPM or only a small change in RPM?

YES

Clear DTC and Test-drive under enable conditions above-mentioned. After the test, If this DTC is set, go to "Inspection amp; amp; Repair" procedure. If not, troubleshooting is completed.

NO

Replace injector, and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR E3012620

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions

FL -602 FUEL SYSTEM

- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC

Go to the applicable troubleshooting procedure.

FL -603

DTC P2188 SYSTEM TOO RICH AT IDLE (BANK 1) DTC P2190 SYSTEM TOO RICH AT IDLE (BANK 2)

GENERAL DESCRIPTION EB136E1B

In order to provide the best possible combination of drivability, fuel economy and emission control, the PCM uses a closed loop air/fuel metering system. The PCM monitors the HO2S signal voltage and adjusts fuel delivery as needed. Changes in fuel delivery will be indicated by the long-term and the short-term fuel trim values. The ideal fuel trim value is around 0%. The PCM will add fuel when the HO2S signal is indicating a lean condition. Additional fuel is indicated by fuel trim values that are above 0%. The PCM will reduce fuel when the HO2S signal is indicating a rich condition. Reduction in fuel is indicated by fuel trim values that are below 0%. The DTC relevant to fuel trim will be set when the amount reaches excessive levels because of a lean or rich condition.

DTC DESCRIPTION EDBF70B1

Checking the fuel trim value at idle under detecting condition, if its average exceeds the limit over certain period, PCM sets P2188/P2190. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION EEB4A611

Item	Detecting Condition	Possible cause
DTC Strategy	Monitor the fuel trim value at idle	
EnableConditions	 Engine at operating temperature Engine running under Idle state over 5 minutes 60 (140) Engine coolant temperature	 Blocking of intake system Fuel leakage in injector Improper fuel pressure
Threshold value	 Average of short term fuel trim < 1.5 and Average of long term fuel trim < 0.76 	impropor raor procodito
DiagnosisTime	Continuous	
MIL On Condition	2 Driving Cycles	

MONITOR SCANTOOL DATA E57A6DEE

- Monitor DTCs related to HO2S, MAFS, MAPS, ECTS, PCSV, Injector or CVVT items with scantool.
- 2. Are related DTCs present?

Do all repairs associated with those codes before proceeding with this procedure.

Go to "System Inspection" procedure

SYSTEM INSPECTION E5B54024

- Check blocking of intake system
 - 1) Visually/physically inspect the intake/exhaust system for following items

FL -604 FUEL SYSTEM

Throttle body gasket and damage Blocking in intake manifold and injector caused by any foreign substance

2) Has a problem been found?

Repair or replace it, and go to "Verification of Vehicle Repair" procedure.

Go to " Check fuel pressure" as follows.

2. Check fuel pressure

- 1. Be cautious that Fuel is explosive and an empty fuel tank can still contain explosive gases. When working on fuel system make sure to supply adequate ventilation to the work area. Do not smoke, and keep sparks and open flames away.
- 2. The fuel system remains under pressure when the engine is not running. Release fuel system pressure before disconnecting any fuel line to reduce the chance of presonal injury or fire damage to vehicle components.
- 1) IG "OFF" and disconnect Fuel Pump Relay in Junction Box.
- 2) Start the engine and wait until the engine stalls.
- 3) IG "OFF" and connect Fuel Pump Relay.
- 4) Install the fuel pressure gauge to the delivery pipe with the fuel pressure gauge adaptor.
- 5) Activate the fuel pump, and with fuel pressure applied, check that there is no fuel leakage from the pressure gauge or connection part.
- 6) Measure the fuel pressure at idle.

Specification: 374.6 ~ 384.4 kPa(3.82 ~ 3.92 kg/cm², 54.3 ~ 55.8 psi)

7) Is the measured fuel pressure within specifications?

Go to "Component Inspection" procedure.

Repair or replace according to the below table. And then, go to "Verification of Vehicle Repair"procedure.

Condition	Possible Cause
Fuel Pressure is too low	Fuel filter,fuel pressure regulator, in-tank fuel hose or the fuel pump
Fuel Pressure is too high	Fuel pressure regulator, hose or pipe

- Check fuel leakage in injector
 - IG "OFF" after checking the fuel pressure test.
 - 2) Stop engine and check for a change in the fuel pressure gauge reading for 5 minutes.

FL -605

Specification: After engine stops, fuel gauge reading is maintained for 5 minutes.

3) Is the fuel gauge reading maintained?

Clear DTC and Test-drive under enable conditions above-mentioned. After the test, If this DTC is set, go to "Inspection amp; amp; Repair" procedure. If not, troubleshooting is completed.

There is a fuel leakage in injector. Replace it, and go to "Verification of Vehicle Repair" procedure.

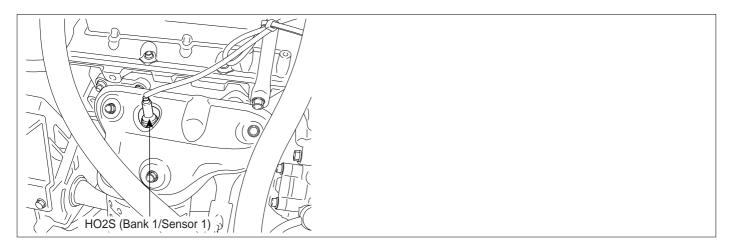
VERIFICATION OF VEHICLE REPAIR E988683A

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

YES

System performing to specification at this time. Clear the DTC


ولین سامانه دیجیتال تعمیرکاران خودرو د<mark>_ NO</mark>

Go to the applicable troubleshooting procedure.

FL -606 FUEL SYSTEM

DTC P2195 HO2S SIGNAL STUCK LEAN (BANK 1 / SENSOR 1)

COMPONENT LOCATION EA134EB2

SGHFL7310N

GENERAL DESCRIPTION EB705336

In order to control emissions of the CO, HC and NOx components of the exhaust gas, heated oxygen sensor (HO2S), mounted on the front side and rear side of catalytic converter, detects the oxygen content in the exhaust gas. The front HO2S signal is used to control air/fuel ratio (closed loop fuel control) and the rear HO2S signal is used to monitor front HO2S and catalyst for proper operation. The HO2S requires a minimum temperature to operate properly and provide a closed loop fuel control system. The HO2S contains the heater element to reduce its warming-up time and ensure its performance during all driving conditions. The oxygen sensor generates a voltage that indicates the difference between the oxygen content of the exhaust stream and the oxygen content of ambient air. When the exhaust stream is "rich," there is more oxygen in the ambient air than in the exhaust stream, so the voltage will be higher.

DTC DESCRIPTION ECDAB25B

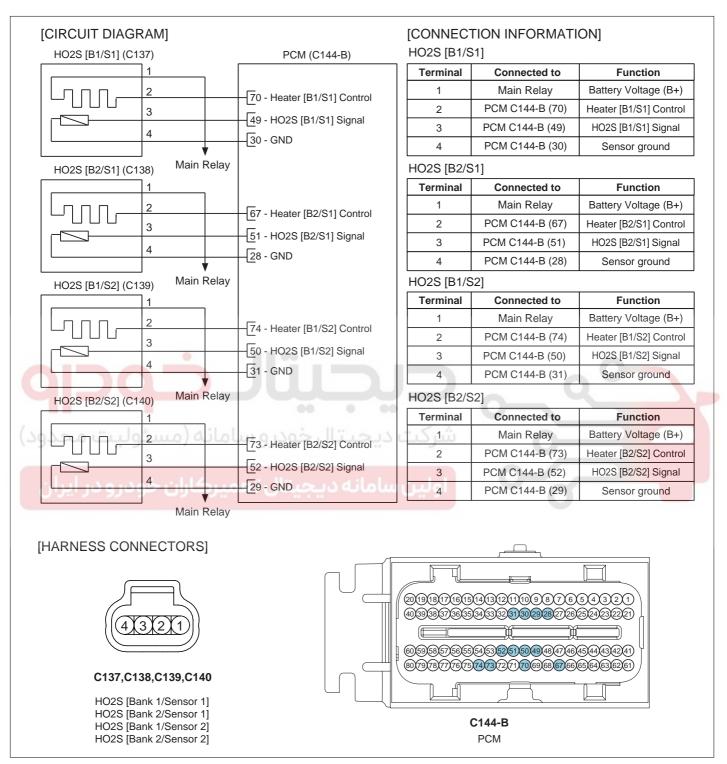
Checking output signals from HO2S under detecting condition, if HO2S's signal is lean during power enrichment conditions, PCM sets P2195. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION EADFCEE2

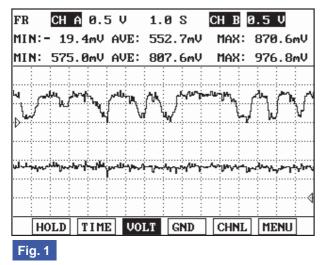
Item	Detecting Condition	Possible cause
DTC Strategy	Monitor HO2S's signal	
EnableConditions	 Battery voltage 10V Engine running 60sec. Power Enrichment conditions Engine warm-up state Not in Transient Conditions 	Poor ConnectionFaulty HO2SClogging of fuel filter in
Threshold value	HO2S's signal amp;lt; 0.35V and Air Fuel Ratio 13.5	fuel pump • Faulty PCM
DiagnosisTime	Continuous (More than 8 sec. failure for every 9 sec. Test)	
MIL On Condition	2 Driving Cycles	

FL -607

SPECIFICATION E5119AA


Test Condition	HO2S Voltage(Sensor1)	HO2S Voltage(Sensor2)
HO2S Signal at idle after warm-up	Signal is normally switching from rich to lean more than 3 times in 10 sec.	Signal is normally above 0.6V.
HO2S signal at open circuit(Pumping current OFF)	Approx. 0.45V	
HO2S signal at open circuit(Pumping current ON)	Approx	. 3.5V

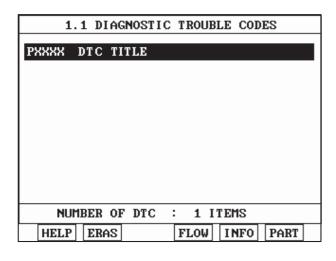
FL -608 FUEL SYSTEM


SCHEMATIC DIAGRAM E9702

UFBG250B

FL -609

SIGNAL WAVEFROM AND DATA ECO


Signal waveforms of front HO2S(the upper) and rear HO2S(the lower)

SEPFL6611N

After warming-up, if accelerator pedal is released suddenly around 4000rpm, the HO2S signal reading will be lower than 200mV resulting from Fuel cut-off for the moment. Conversely, if suddenly accelerator pedal is depressed, HO2S signal reading will be around 0.6V ~1.0V. At idle, Normally HO2S signal will switch from lean to rich with 3 Hz. At higher engine RPM, the switching frequency increases.

MONITOR DTC STATUS ED1B1E89

- Check DTC Status
 - Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu
 - 4) Read "DTC Status" parameter.

PXXXX DTC TITLE

1.MIL STATUS: ON/OFF
2.DTC STATUS: PRESENT/HISTORY
3.DIAG.STATUS: DIAGNOSIS FINISHED!

SGHFL7305L

5) Is "Present" Fault displayed?

FL -610 FUEL SYSTEM

YES

Go to "Component Inspection" procedure.

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION ED615D37

- Check the condition of HO2S
 - 1) Check HO2S for poor connection or loose terminal.
 - 2) Check if HO2S is ensurely installed.
 - 3) Are the conditions of HO2S normal?

YES

Go to "Check the Signal waveform of HO2S" as follows.

NO

Repair it and then go to "Verification of Vehicle Repair" procedure.

- 2. Check the Signal waveform of HO2S
 - 1) IG "OFF" and connect HO2S connector.
 - 2) Engine start.
 - 3) After warming-up, monitor signal waveform of HO2S with scantool.

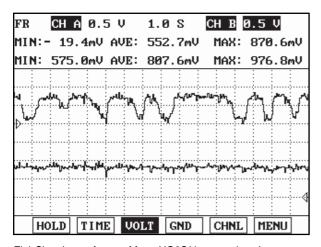


Fig) Signal waveforms of front HO2S(the upper) and rear HO2S(the lower)

SEPFL6612N

4) Is the sensor switching properly?

YES

FL -611

Go to "Check fuel filter" as follows.

Substitute with a known - good HO2S and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

- Check the fuel filter
 - 1) IG "OFF" and disconnect the fuel pump connector.
 - 2) Start the engine and wait until fuel in fuel line is exhausted. After the engine stalls, IG "OFF"
 - Remove the fuel pump assembly.
 - 4) Check the fuel filter for clogging by dust, a foreign substance.
 - 5) Is the fuel filter O.K.?

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

NO

Substitute with a known - good fuel filter and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. Before or after testing PCM on the vehicle, use this function before reusing the PCM

VERIFICATION OF VEHICLE REPAIR EC72B15E

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

YES

System performing to specification at this time. Clear the DTC

NO

Go to the applicable troubleshooting procedure.

FL -612 FUEL SYSTEM

DTC P2196 HO2S SIGNAL STUCK RICH (BANK 1 / SENSOR 1)

COMPONENT LOCATION EAOC8DBF

Refer to DTC P2195.

GENERAL DESCRIPTION E7F81649

Refer to DTC P2195.

DTC DESCRIPTION E37B53AC

Checking output signals from HO2S under detecting condition, if HO2S's signal is rich during fuel cut-off conditions, PCM sets P2196. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION EF9789C9

Item	Detecting Condition	Possible cause
DTC Strategy	Monitor HO2S's signal	
EnableConditions	 Battery voltage 10V Engine running 60sec. Power Enrichment conditions Engine warm-up state Not in Transient Conditions 	Poor ConnectionFaulty HO2S
Threshold value	HO2S's signal amp;gt; 0.42V	Faulty PCM
DiagnosisTime	 Continuous (More than 8 sec. failure for every 9 sec. Test) 	0-7
MIL On Condition	2 Driving Cycles	

SPECIFICATION E6D88A59

Test Condition	HO2S Voltage(Sensor1)	HO2S Voltage(Sensor2)
HO2S Signal at idle after warm-up	Signal is normally switching from rich to lean more than 3 times in 10 sec.	Signal is normally above 0.6V.
HO2S signal at open circuit(Pumping current OFF)	Approx. 0.45V	
HO2S signal at open circuit(Pumping current ON)	Approx	. 3.5V

SCHEMATIC DIAGRAM ED143C7F

Refer to DTC P2195.

SIGNAL WAVEFROM AND DATA E40B9E12

Refer to DTC P2195.

FL -613

MONITOR DTC STATUS EE1C40

Refer to DTC P2195.

COMPONENT INSPECTION EC3D1F21

- 1. Check the condition of HO2S
 - 1) Check HO2S for poor connection or loose terminal.
 - 2) Check if HO2S is ensurely installed.
 - 3) Are the conditions of HO2S normal?

Go to "Check the Signal waveform of HO2S" as follows.

NO

Repair it and then go to "Verification of Vehicle Repair" procedure.

- Check the Signal waveform of HO2S
 - 1) IG "OFF" and connect HO2S connector.
 - Engine start.
 - 3) After warming-up, monitor signal waveform of HO2S with scantool.

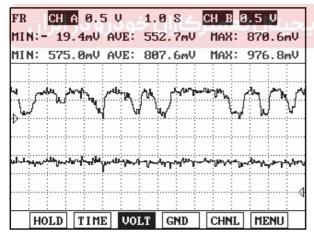


Fig) Signal waveforms of front HO2S(the upper) and rear HO2S(the lower)

SEPFL6612N

4) Is the sensor switching properly?

YES

Go to "Check fuel filter" as follows.

NO

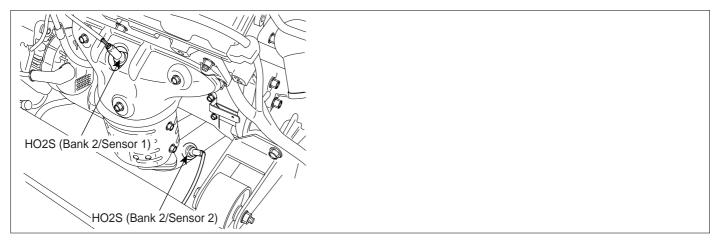
Substitute with a known - good HO2S and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

FL -614 FUEL SYSTEM

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. Before or after testing PCM on the vehicle, use this function before reusing the PCM

VERIFICATION OF VEHICLE REPAIR E9EDBD12

Refer to DTC P2195.



FL -615

DTC P2197 HO2S SIGNAL STUCK LEAN (BANK 2 / SENSOR 1)

COMPONENT LOCATION E04A144E

SGHFL7312N

GENERAL DESCRIPTION EOAD5E5

In order to control emissions of the CO, HC and NOx components of the exhaust gas, heated oxygen sensor (HO2S), mounted on the front side and rear side of catalytic converter, detects the oxygen content in the exhaust gas. The front HO2S signal is used to control air/fuel ratio (closed loop fuel control) and the rear HO2S signal is used to monitor front HO2S and catalyst for proper operation. The HO2S requires a minimum temperature to operate properly and provide a closed loop fuel control system. The HO2S contains the heater element to reduce its warming-up time and ensure its performance during all driving conditions. The oxygen sensor generates a voltage that indicates the difference between the oxygen content of the exhaust stream and the oxygen content of ambient air. When the exhaust stream is "rich," there is more oxygen in the ambient air than in the exhaust stream, so the voltage will be higher.

DTC DESCRIPTION E94EBE8A

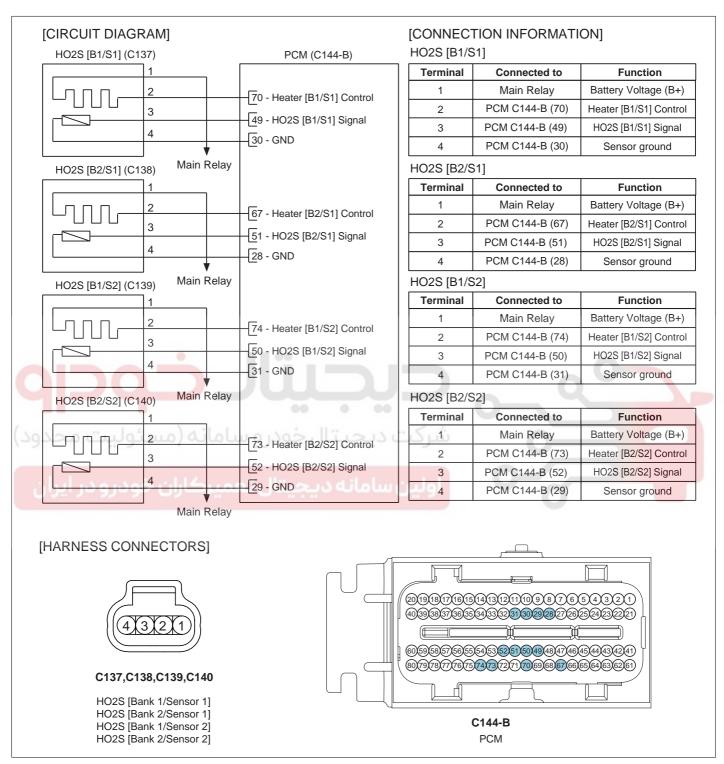
Checking output signals from HO2S under detecting condition, if HO2S's signal is lean during power enrichment conditions, PCM sets P2197. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION ESFAAEA6

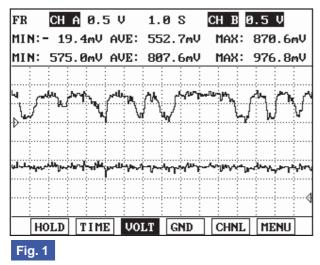
Item	Detecting Condition	Possible cause
DTC Strategy	Monitor HO2S's signal	
EnableConditions	 Battery voltage 10V Engine running 60sec. Power Enrichment conditions Engine warm-up state Not in Transient Conditions 	Poor ConnectionFaulty HO2SClogging of fuel filter in
Threshold value	HO2S's signal < 0.35V and Air Fuel Ratio 13.5	fuel pump • Faulty PCM
DiagnosisTime	Continuous (More than 8 sec. failure for every 9 sec. Test)	
MIL On Condition	2 Driving Cycles	

FL -616 FUEL SYSTEM

SPECIFICATION E896EE2


Test Condition	HO2S Voltage(Sensor1)	HO2S Voltage(Sensor2)
HO2S Signal at idle after warm-up	Signal is normally switching from rich to lean more than 3 times in 10 sec.	Signal is normally above 0.6V.
HO2S signal at open circuit(Pumping current OFF)	Approx. 0.45V	
HO2S signal at open circuit(Pumping current ON)	Approx	. 3.5V

FL -617


SCHEMATIC DIAGRAM E804FB

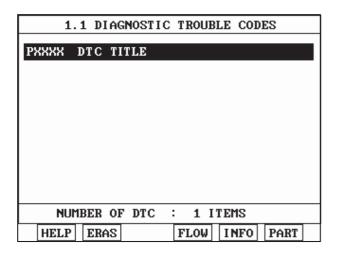
UFBG250B

FL -618 FUEL SYSTEM

SIGNAL WAVEFROM AND DATA EA41B7E

Signal waveforms of front HO2S(the upper) and rear HO2S(the lower)

SEPFL6611N


After warming-up, if accelerator pedal is released suddenly around 4000rpm, the HO2S signal reading will be lower than 200mV resulting from Fuel cut-off for the moment. Conversely, if suddenly accelerator pedal is depressed, HO2S signal reading will be around 0.6V ~1.0V. At idle, Normally HO2S signal will switch from lean to rich with 3 Hz. At higher engine RPM, the switching frequency increases.

MONITOR DTC STATUS EBOC79DA

- Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu

PXXXX DTC TITLE

4) Read "DTC Status" parameter.

1.MIL STATUS: ON/OFF
2.DTC STATUS: PRESENT/HISTORY
3.DIAG.STATUS: DIAGNOSIS FINISHED!

SGHFL7305L

5) Is "Present" Fault displayed?

FL -619

YES

Go to "Component Inspection" procedure.

NO

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION EC4E4071

- 1. Check the condition of HO2S
 - 1) Check HO2S for poor connection or loose terminal.
 - 2) Check if HO2S is ensurely installed.
 - 3) Are the conditions of HO2S normal?

YES

Go to "Check the Signal waveform of HO2S" as follows.

NO

Repair it and then go to "Verification of Vehicle Repair" procedure.

- 2. Check the Signal waveform of HO2S
 - 1) IG "OFF" and connect HO2S connector.
 - Engine start.
 - 3) After warming-up, monitor signal waveform of HO2S with scantool.

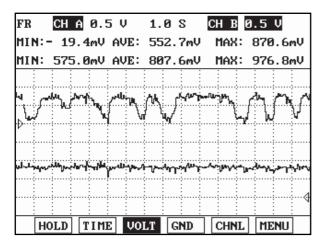


Fig) Signal waveforms of front HO2S(the upper) and rear HO2S(the lower)

SEPFL6612N

4) Is the sensor switching properly?

YES

FL -620 FUEL SYSTEM

Go to "Check fuel filter" as follows.

Substitute with a known - good HO2S and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

- 3. Check the fuel filter
 - 1) IG "OFF" and disconnect the fuel pump connector.
 - 2) Start the engine and wait until fuel in fuel line is exhausted. After the engine stalls, IG "OFF"
 - 3) Remove the fuel pump assembly.
 - 4) Check the fuel filter for clogging by dust, a foreign substance.
 - 5) Is the fuel filter O.K.?

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

Substitute with a known - good fuel filter and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. Before or after testing PCM on the vehicle, use this function before reusing the PCM

VERIFICATION OF VEHICLE REPAIR E965533B

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

YES

System performing to specification at this time. Clear the DTC

Go to the applicable troubleshooting procedure.

FL -621

DTC P2198 HO2S SIGNAL STUCK RICH (BANK 2 / SENSOR 1)

COMPONENT LOCATION E5D4B2DA

Refer to DTC P2197.

GENERAL DESCRIPTION E6D58E8E

Refer to DTC P2197.

DTC DESCRIPTION E368D2E4

Checking output signals from HO2S under detecting condition, if HO2S's signal is rich during fuel cut-off conditions, PCM sets P2198. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION E2E93B4E

Item	Detecting Condition	Possible cause
DTC Strategy	Monitor HO2S's signal	
EnableConditions	 Battery voltage 10V Engine running 60sec. Power Enrichment conditions Engine warm-up state Not in Transient Conditions 	Poor ConnectionFaulty HO2S
Threshold value	HO2S's signal > 0.42V	Faulty PCM
DiagnosisTime	Continuous (More than 8 sec. failure for every 9 sec. Test)	
MIL On Condition	2 Driving Cycles	

SPECIFICATION E05F6E14

Test Condition	HO2S Voltage(Sensor1)	HO2S Voltage(Sensor2)
HO2S Signal at idle after warm-up	Signal is normally switching from rich to lean more than 3 times in 10 sec.	Signal is normally above 0.6V.
HO2S signal at open circuit(Pumping current OFF)	$\Delta n n n n n n n n n n n n n n n n n n n$	
HO2S signal at open circuit(Pumping current ON)	Approx	. 3.5V

SCHEMATIC DIAGRAM EB33F263

Refer to DTC P2197.

SIGNAL WAVEFROM AND DATA E1BBC90B

Refer to DTC P2197.

FL -622 FUEL SYSTEM

MONITOR DTC STATUS E613484

Refer to DTC P2197.

COMPONENT INSPECTION EAAE1D86

- 1. Check the condition of HO2S
 - 1) Check HO2S for poor connection or loose terminal.
 - 2) Check if HO2S is ensurely installed.
 - 3) Are the conditions of HO2S normal?

Go to "Check the Signal waveform of HO2S" as follows.

NO

Repair it and then go to "Verification of Vehicle Repair" procedure.

- 2. Check the Signal waveform of HO2S
 - 1) IG "OFF" and connect HO2S connector.
 - 2) Engine start.
 - 3) After warming-up, monitor signal waveform of HO2S with scantool.

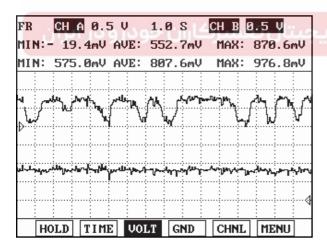


Fig) Signal waveforms of front HO2S(the upper) and rear HO2S(the lower)

SEPFL6612N

4) Is the sensor switching properly?

YES

Go to "Check fuel filter" as follows.

NO

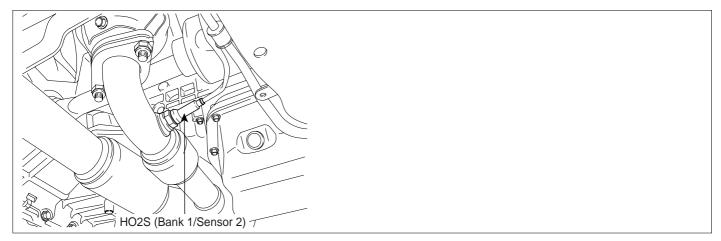
Substitute with a known - good HO2S and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

FL -623

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. Before or after testing PCM on the vehicle, use this function before reusing the PCM

VERIFICATION OF VEHICLE REPAIR E77E9E38

Refer to DTC P2197.



FL -624 FUEL SYSTEM

DTC P2270 O2 SENSOR SIGNAL STUCK LEAN (BANK 1 / SENSOR 2)

COMPONENT LOCATION E89470AD

SGHFL7311N

GENERAL DESCRIPTION E25E74E2

The rear heated oxygen sensor is mounted on the rear side of the Catalytic Converter (warm-up catalytic converter) or in the rear exhaust pipe, which is able to detect catalyst efficiency. The rear heated oxygen sensor (HO2S) produces a voltage between 0V and 1V. This rear heated oxygen sensor is used to estimate the oxygen storage capability. If a catalyst has good conversion properties, the oxygen fluctuations are smoothed by the oxygen storage capacity of the catalyst. If the conversion provided by the catalyst is low due to aging, poisoning or misfiring, then the oxygen fluctuations are similar to signals from the front oxygen sensor.

DTC DESCRIPTION E7F38976

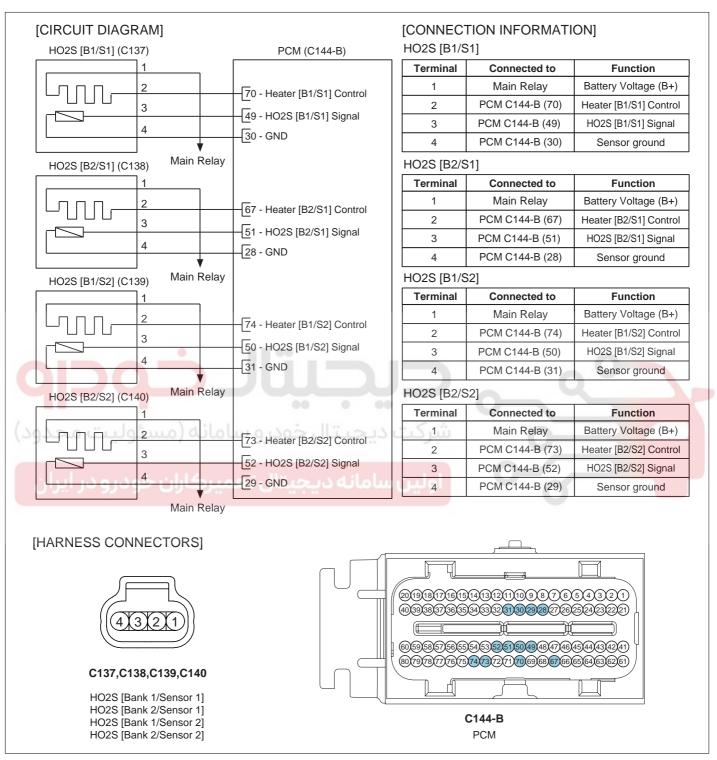
Checking output signals from HO2S under detecting condition, if HO2S's signal is lean during power enrichment conditions, PCM sets P2270. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION FCACCEAD

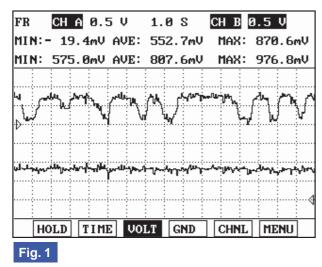
Item	Detecting Condition	Possible cause
DTC Strategy	Monitor HO2S's signal	
EnableConditions	 Battery voltage 10V Engine running 60sec. Power Enrichment conditions Engine warm-up state Not in Transient Conditions 	Poor ConnectionFaulty HO2SClogging of fuel filter in
Threshold value	HO2S's signal < 0.35V and Air Fuel Ratio 13.5	fuel pump Faulty PCM
DiagnosisTime	Continuous (More than 8 sec. failure for every 9 sec. Test)	
MIL On Condition	2 Driving Cycles	

FL -625

SPECIFICATION EACBDCDD


Test Condition	HO2S Voltage(Sensor1)	HO2S Voltage(Sensor2)
HO2S Signal at idle after warm-up	Signal is normally switching from rich to lean more than 3 times in 10 sec.	Signal is normally above 0.6V.
HO2S signal at open circuit(Pumping current OFF)	Approx. 0.45V	
HO2S signal at open circuit(Pumping current ON)	Approx. 3.5V	

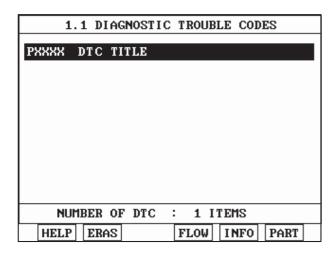
FL -626 FUEL SYSTEM


SCHEMATIC DIAGRAM E854FA

UFBG250B

FL -627

SIGNAL WAVEFROM AND DATA E3E


Signal waveforms of front HO2S(the upper) and rear HO2S(the lower)

SEPFL6611N

After warming-up, if accelerator pedal is released suddenly around 4000rpm, the HO2S signal reading will be lower than 200mV resulting from Fuel cut-off for the moment. Conversely, if suddenly accelerator pedal is depressed, HO2S signal reading will be around 0.6V ~1.0V. At idle, Normally HO2S signal will switch from lean to rich with 3 Hz. At higher engine RPM, the switching frequency increases.

MONITOR DTC STATUS E7A2B487

- Check DTC Status
 - Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu
 - 4) Read "DTC Status" parameter.

PXXXX DTC TITLE

1.MIL STATUS: ON/OFF
2.DTC STATUS: PRESENT/HISTORY
3.DIAG.STATUS: DIAGNOSIS FINISHED!

SGHFL7305L

5) Is "Present" Fault displayed?

FL -628 FUEL SYSTEM

YES

Go to "Component Inspection" procedure.

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION E857794B

- Check the condition of HO2S
 - 1) Check HO2S for poor connection or loose terminal.
 - 2) Check if HO2S is ensurely installed.
 - 3) Are the conditions of HO2S normal?

YES

Go to "Check the Signal waveform of HO2S" as follows.

NO

Repair it and then go to "Verification of Vehicle Repair" procedure.

- Check the Signal waveform of HO2S
 - 1) IG "OFF" and connect HO2S connector.
 - 2) Engine start.
 - 3) After warming-up, monitor signal waveform of HO2S with scantool.

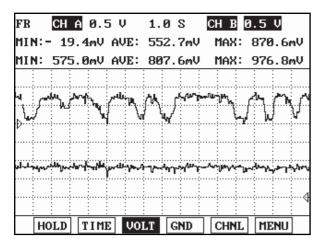


Fig) Signal waveforms of front HO2S(the upper) and rear HO2S(the lower)

SEPFL6612N

4) Is the sensor switching properly?

YES

FL -629

Go to "Check fuel filter" as follows.

Substitute with a known - good HO2S and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

- 3. Check the fuel filter
 - 1) IG "OFF" and disconnect the fuel pump connector.
 - Start the engine and wait until fuel in fuel line is exhausted. After the engine stalls, IG "OFF"
 - 3) Remove the fuel pump assembly.
 - 4) Check the fuel filter for clogging by dust, a foreign substance.
 - 5) Is the fuel filter O.K.?

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

NO

Substitute with a known - good fuel filter and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. Before or after testing PCM on the vehicle, use this function before reusing the PCM

VERIFICATION OF VEHICLE REPAIR E78083F6

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

YES

System performing to specification at this time. Clear the DTC

NO

Go to the applicable troubleshooting procedure.

FL -630 FUEL SYSTEM

DTC P2271 HO2S SIGNAL STUCK RICH (BANK 1 / SENSOR 2)

COMPONENT LOCATION E767B8EC

Refer to DTC P2270.

GENERAL DESCRIPTION EDAC63E4

Refer to DTC P2270.

DTC DESCRIPTION E6952C19

Checking output signals from HO2S under detecting condition, if HO2S's signal is rich during fuel cut-off conditions, PCM sets P2271. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION E038891E

Item	Detecting Condition	Possible cause
DTC Strategy	Monitor HO2S's signal	
EnableConditions	 Battery voltage 10V Engine running 60sec. Power Enrichment conditions Engine warm-up state Not in Transient Conditions 	Poor ConnectionFaulty HO2S
Threshold value	HO2S's signal > 0.42V	Faulty PCM
DiagnosisTime	 Continuous (More than 8 sec. failure for every 9 sec. Test) 	0-6-
MIL On Condition	2 Driving Cycles	

SPECIFICATION E94EFC85

Test Condition	HO2S Voltage(Sensor1)	HO2S Voltage(Sensor2)
HO2S Signal at idle after warm-up	Signal is normally switching from rich to lean more than 3 times in 10 sec.	Signal is normally above 0.6V.
HO2S signal at open circuit(Pumping current OFF)	Approx. 0.45V	
HO2S signal at open circuit(Pumping current ON)	Approx	. 3.5V

SCHEMATIC DIAGRAM EFA93E49

Refer to DTC P2270.

SIGNAL WAVEFROM AND DATA E113E661

Refer to DTC P2270.

FL -631

MONITOR DTC STATUS

Refer to DTC P2270.

COMPONENT INSPECTION EE108B20

- 1. Check the condition of HO2S
 - 1) Check HO2S for poor connection or loose terminal.
 - 2) Check if HO2S is ensurely installed.
 - 3) Are the conditions of HO2S normal?

Go to "Check the Signal waveform of HO2S" as follows.

NO

Repair it and then go to "Verification of Vehicle Repair" procedure.

- 2. Check the Signal waveform of HO2S
 - 1) IG "OFF" and connect HO2S connector.
 - Engine start.
 - 3) After warming-up, monitor signal waveform of HO2S with scantool.

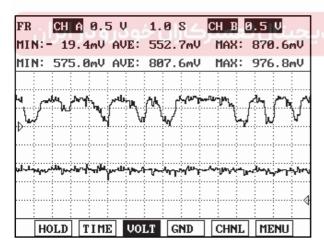


Fig) Signal waveforms of front HO2S(the upper) and rear HO2S(the lower)

SEPFL6612N

4) Is the sensor switching properly?

YES

Go to "Check fuel filter" as follows.

NO

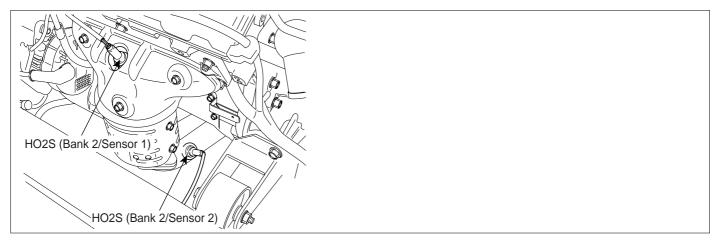
Substitute with a known - good HO2S and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

FL -632 FUEL SYSTEM

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. Before or after testing PCM on the vehicle, use this function before reusing the PCM

VERIFICATION OF VEHICLE REPAIR E2E93633

Refer to DTC P2270.



FL -633

DTC P2272 HO2S SIGNAL STUCK LEAN (BANK 2 / SENSOR 2)

COMPONENT LOCATION EC80A1CD

SGHFL7312N

GENERAL DESCRIPTION E1B1E39C

The rear heated oxygen sensor is mounted on the rear side of the Catalytic Converter (warm-up catalytic converter) or in the rear exhaust pipe, which is able to detect catalyst efficiency. The rear heated oxygen sensor (HO2S) produces a voltage between 0V and 1V. This rear heated oxygen sensor is used to estimate the oxygen storage capability. If a catalyst has good conversion properties, the oxygen fluctuations are smoothed by the oxygen storage capacity of the catalyst. If the conversion provided by the catalyst is low due to aging, poisoning or misfiring, then the oxygen fluctuations are similar to signals from the front oxygen sensor.

DTC DESCRIPTION E3F81623

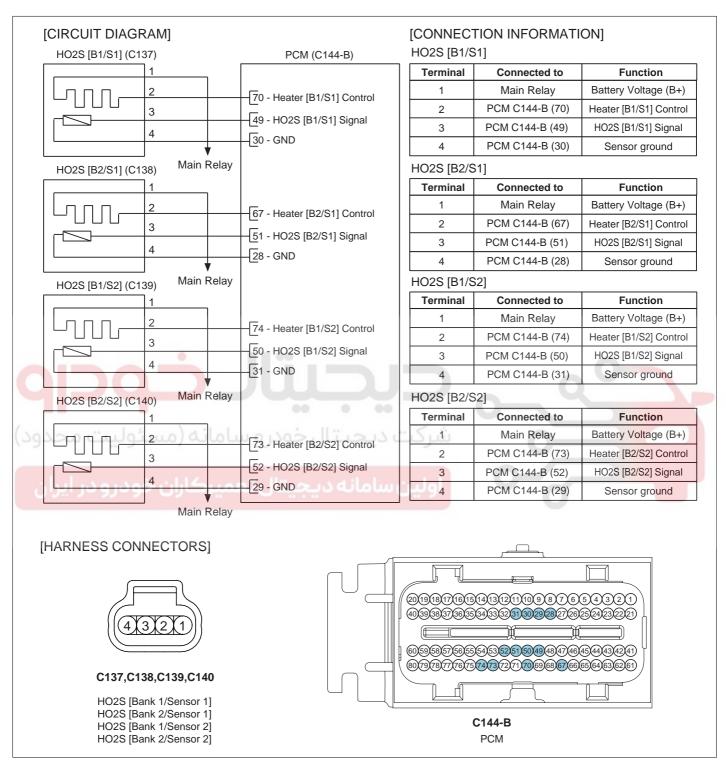
Checking output signals from HO2S under detecting condition, if HO2S's signal is lean during power enrichment conditions, PCM sets P2272. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION EAFCAA2F

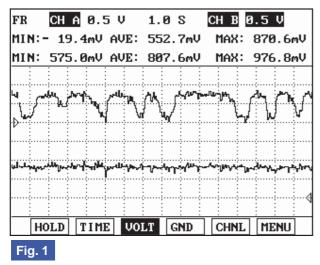
Item	Detecting Condition	Possible cause
DTC Strategy	Monitor HO2S's signal	
EnableConditions	 Battery voltage 10V Engine running 60sec. Power Enrichment conditions Engine warm-up state Not in Transient Conditions 	Poor ConnectionFaulty HO2SClogging of fuel filter in
Threshold value	HO2S's signal < 0.35V and Air Fuel Ratio 13.5	fuel pump • Faulty PCM
DiagnosisTime	Continuous (More than 8 sec. failure for every 9 sec. Test)	
MIL On Condition	2 Driving Cycles	

FL -634 FUEL SYSTEM

SPECIFICATION E2FFB04B


Test Condition	HO2S Voltage(Sensor1)	HO2S Voltage(Sensor2)
HO2S Signal at idle after warm-up	Signal is normally switching from rich to lean more than 3 times in 10 sec.	Signal is normally above 0.6V.
HO2S signal at open circuit(Pumping current OFF)	Approx. 0.45V	
HO2S signal at open circuit(Pumping current ON)	Approx	. 3.5V

FL -635


SCHEMATIC DIAGRAM ED77D14

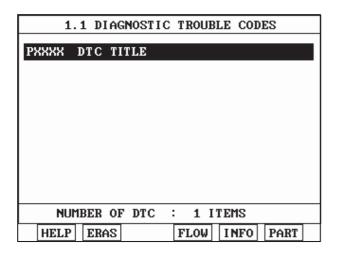
UFBG250B

FL -636 FUEL SYSTEM

SIGNAL WAVEFROM AND DATA EAB2944

Signal waveforms of front HO2S(the upper) and rear HO2S(the lower)

SEPFL6611N


After warming-up, if accelerator pedal is released suddenly around 4000rpm, the HO2S signal reading will be lower than 200mV resulting from Fuel cut-off for the moment. Conversely, if suddenly accelerator pedal is depressed, HO2S signal reading will be around 0.6V ~1.0V. At idle, Normally HO2S signal will switch from lean to rich with 3 Hz. At higher engine RPM, the switching frequency increases.

MONITOR DTC STATUS E33D5D42

- Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu

PXXXX DTC TITLE

4) Read "DTC Status" parameter.

1.MIL STATUS: ON/OFF
2.DTC STATUS: PRESENT/HISTORY
3.DIAG.STATUS: DIAGNOSIS FINISHED!

SGHFL7305L

5) Is "Present" Fault displayed?

FL -637

YES

Go to "Component Inspection" procedure.

NO

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION E9980C08

- 1. Check the condition of HO2S
 - 1) Check HO2S for poor connection or loose terminal.
 - 2) Check if HO2S is ensurely installed.
 - 3) Are the conditions of HO2S normal?

YES

Go to "Check the Signal waveform of HO2S" as follows.

NO

Repair it and then go to "Verification of Vehicle Repair" procedure.

- 2. Check the Signal waveform of HO2S
 - 1) IG "OFF" and connect HO2S connector.
 - Engine start.
 - 3) After warming-up, monitor signal waveform of HO2S with scantool.

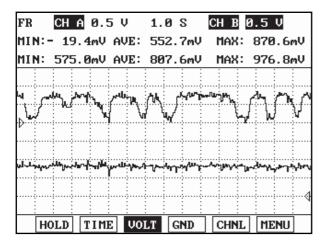


Fig) Signal waveforms of front HO2S(the upper) and rear HO2S(the lower)

SEPFL6612N

4) Is the sensor switching properly?

YES

FL -638 FUEL SYSTEM

Go to "Check fuel filter" as follows.

Substitute with a known - good HO2S and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

- 3. Check the fuel filter
 - 1) IG "OFF" and disconnect the fuel pump connector.
 - 2) Start the engine and wait until fuel in fuel line is exhausted. After the engine stalls, IG "OFF"
 - 3) Remove the fuel pump assembly.
 - 4) Check the fuel filter for clogging by dust, a foreign substance.
 - 5) Is the fuel filter O.K.?

Substitute with a known - good PCM and check for proper operation. If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

Substitute with a known - good fuel filter and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. Before or after testing PCM on the vehicle, use this function before reusing the PCM

VERIFICATION OF VEHICLE REPAIR E11F1EA9

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC

Go to the applicable troubleshooting procedure.

FL -639

DTC P2273 HO2S SIGNAL STUCK RICH (BANK 2 / SENSOR 2)

COMPONENT LOCATION E347A90D

Refer to DTC P2272.

GENERAL DESCRIPTION EC5EA167

Refer to DTC P2272.

DTC DESCRIPTION EF323392

Checking output signals from HO2S under detecting condition, if HO2S's signal is rich during fuel cut-off conditions, PCM sets P2273. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION EDCB7776

Item	Detecting Condition	Possible cause
DTC Strategy	Monitor HO2S's signal	
EnableConditions	 Battery voltage 10V Engine running 60sec. Power Enrichment conditions Engine warm-up state Not in Transient Conditions 	Poor ConnectionFaulty HO2S
Threshold value	HO2S's signal > 0.42V	Faulty PCM
DiagnosisTime	Continuous (More than 8 sec. failure for every 9 sec. Test)	
MIL On Condition	2 Driving Cycles	

SPECIFICATION ECAF3940

Test Condition	HO2S Voltage(Sensor1)	HO2S Voltage(Sensor2)
HO2S Signal at idle after warm-up	Signal is normally switching from rich to lean more than 3 times in 10 sec.	Signal is normally above 0.6V.
HO2S signal at open circuit(Pumping current OFF)	Δηριον 11 45 /	
HO2S signal at open circuit(Pumping current ON)	Approx	3.5V

SCHEMATIC DIAGRAM E8A22CA5

Refer to DTC P2272.

SIGNAL WAVEFROM AND DATA E5382CAB

Refer to DTC P2272.

FL -640 FUEL SYSTEM

MONITOR DTC STATUS EB94F194

Refer to DTC P2272.

COMPONENT INSPECTION EFDFE0C7

- 1. Check the condition of HO2S
 - 1) Check HO2S for poor connection or loose terminal.
 - 2) Check if HO2S is ensurely installed.
 - 3) Are the conditions of HO2S normal?

Go to "Check the Signal waveform of HO2S" as follows.

NO

Repair it and then go to "Verification of Vehicle Repair" procedure.

- 2. Check the Signal waveform of HO2S
 - 1) IG "OFF" and connect HO2S connector.
 - 2) Engine start.
 - After warming-up, monitor signal waveform of HO2S with scantool.

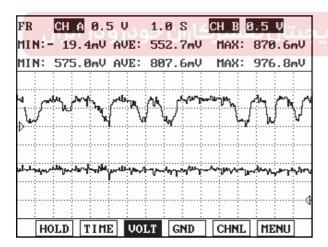


Fig) Signal waveforms of front HO2S(the upper) and rear HO2S(the lower)

SEPFL6612N

4) Is the sensor switching properly?

YES

Go to "Check fuel filter" as follows.

NO

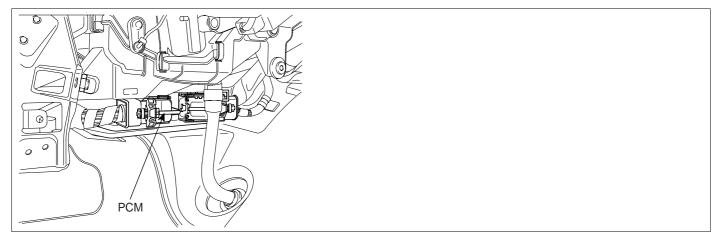
Substitute with a known - good HO2S and check for proper operation. If the problem is corrected, go to "Verification of Vehicle Repair" procedure.

FL -641

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. Before or after testing PCM on the vehicle, use this function before reusing the PCM

VERIFICATION OF VEHICLE REPAIR EFF25103

Refer to DTC P2272.



FL -642 FUEL SYSTEM

DTC P2507 ECM/PCM POWER INPUT SIGNAL LOW

COMPONENT LOCATION E8CF9B07

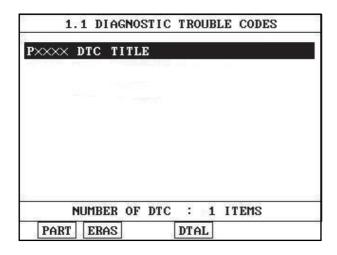
SGHFL7335N

GENERAL DESCRIPTION E486ACBO

When the ignition switch is turned "ON", battery voltage is applied from the battery to the PCM through the main relay. In case that the ignition switch is turned "OFF", the PCM is supplied with power through the battery power input line to control the basic operation of vehicle.

DTC DESCRIPTION E54C163F

If the battery power input line has a problem, PCM sets P2507 and MIL(Malfunction Indication Lamp) turns on.


DTC DETECTING CONDITION E4D1443D

Item	Detecting Condition	Possible cause		
DTC Strategy	Monitor the battery power input line			
Enable Conditions	• -	Poor connection		
Threshold value	Open or short to ground in line	Open or short to ground in line Faulty PCM		
Diagnosis Time	Continuous (More than 5 sec.failure for every 10 sec.test)			
MIL On Condition	1 Driving Cycles			

MONITOR DTC STATUS E4087F27

- Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).
 - 2) IG "ON".
 - 3) Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu
 - 4) Read "DTC Status" parameter.

FL -643

PXXXX TITLE

1.MIL STATUS: ON/OFF
2.DTC STATUS: PRESENT/HISTORY
3.DIAG.STATUS: DIAGNOSIS FINISHED

DTC CAUSE TO SYSTEM ERROR: PXXXX

SCMF16159I

5) Is "Present" Fault displayed?

Go to "Terminal and Connector inspection" procedure.

NO

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poorconnection, ending, corrosion, contamination, deterioration, or damage. Repair or replace asnecessary and go to "Verification of Vehicle Repair" procedure.

TERMINAL AND CONNECTOR INSPECTION E030C559

- 1. Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- 2. Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

Repair as necessary and go to "Verification of Vehicle Repair" procedure

NO

Go to " Power Circuit Inspection " procedure.

POWER CIRCUIT INSPECTION EOD76BC

- Check Voltage
 - 1) Ignition "OFF"
 - 2) Disconnect PCM connector
 - 3) Ignition "ON" & Engine "OFF"

FL -644 FUEL SYSTEM

4) Measure voltage between terminal "76" of PCM harness connector(C144-B) and chassis ground

Specification: B+

5) Is the measured voltage within specifications?

Substitute with a known - good PCM and check for proper operation.

If the problem is corrected, replace PCM and go to "Verification of Vehicle Repair" procedure.

Check for open or short to ground in harness.

Check whether fuse is installed or blown off.

Repair or replace as necessary and then, go to "Verification of Vehicle Repair"procedure.

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. After testing PCM on the vehicle, use this function before reusing the PCM

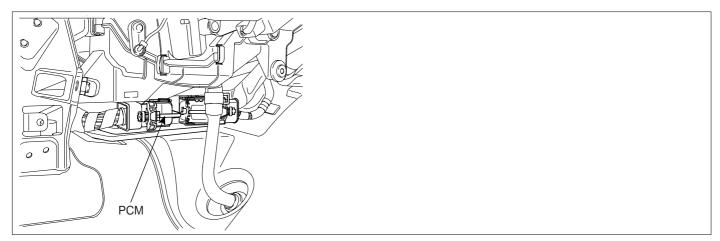
VERIFICATION OF VEHICLE REPAIR E8C7

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

YES

System performing to specification at this time. Clear the DTC.



Go to the applicable troubleshooting procedure.

FL -645

DTC P2610 ECM/PCM INTERNAL ENGINE OFF TIMER PERFORMANCE

COMPONENT LOCATION E26535CA

SGHFL7335N

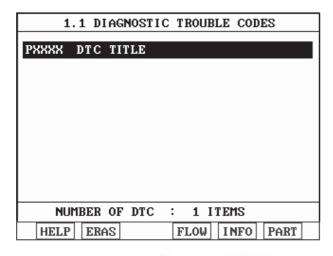
GENERAL DESCRIPTION EF250B4A

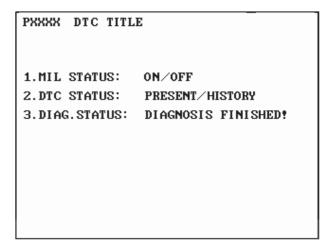
Continuing to calculate data of several sensor despite turning ignition OFF, when ignition turns ON, this enables PCM to be easy using calculated data.

DTC DESCRIPTION E33A6A90

If abnormal counterdown is detected for a calibratable time, PCM sets P2610. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION E15DC80D


ITEM		Detecting Condition	Possible Cause	
DTC Strategy	Case 1	Compares the time elapsed recorded by the LPC(Low Power Counter) against that recorded by the test timer		
	Case 2	Checks for abnormal resets of the LPC		
Enable Condition	Case 1	Engine running 10sec.Battery voltage 8V		
	Case 2	No Memory Failure Occurred	• PCM	
Thresh- old	Case 1	The difference between the counter the LPC and the calibration the test timer clocks up 20sec.		
	Case 2 • The LPC is reset to zero abnormally			
Diagnosis Time		• -		
MIL On Condition		2 Driving Cycle		


MONITOR DTC STATUS E85590B2

- Check DTC Status
 - 1) Connect scantool to Data Link Connector(DLC).

FL -646 FUEL SYSTEM

- 2) IG "ON".
- Select "Diagnostic Trouble Codes(DTCs)" mode, and then Press F5(INFO) to check DTC's information from the DTCs menu
- 4) Read "DTC Status" parameter.

SGHFL7305L

5) Is "Present" Fault displayed?

YES

Go to "Terminal and Connector inspection" procedure.

NO

Fault is intermittent caused by poor contact in the sensor's and/or PCM's connector or was repaired and PCM memory was not cleared. Thoroughly check connectors for looseness, poor connection, ending, corrosion, contamination, deterioration, or damage. Repair or replace as necessary and go to "Verification of Vehicle Repair" procedure.

TERMINAL AND CONNECTOR INSPECTION EOCFCA73

- 1. Many malfunctions in the electrical system are caused by poor harness and terminal condition. Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.
- Thoroughly check connectors for looseness, poor connection, bending, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

Repair as necessary and go to "Verification of Vehicle Repair" procedure.

NO

Substitute with a known-good PCM and check for proper operation. If the problem is corrected,replace PCM and then go to "Verification of Vehicle Repair" procedure.

FL -647

There is a memory reset function on scantool that can erase optional parts automatically detected and memorized by PCM. Before or after testing PCM on the vehicle, use this function before reusing the PCM

VERIFICATION OF VEHICLE REPAIR EA97C36D

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC

NO

Go to the applicable troubleshooting procedure.

شرکت دیجیتال خودرو سامانه (مسئولیت محدود)

اولین سامانه دیجیتال تعمیرکاران خودرو در ایران

FL -648 FUEL SYSTEM

DTC U0001 CAN COMMUNICATION MALFUNCTION

GENERAL DESCRIPTION E794B6E5

Several control units are applied to electronically controlled vehicles. These units perform each control with informations from various sensors. Thus, sharing signal information from sensors is needed, so CAN communication type whose communication speed is high and insensitive to electrical noise by spark generation is adopted to controlling power-train(PCM, TCM,ESP PCM, ABS PCM)

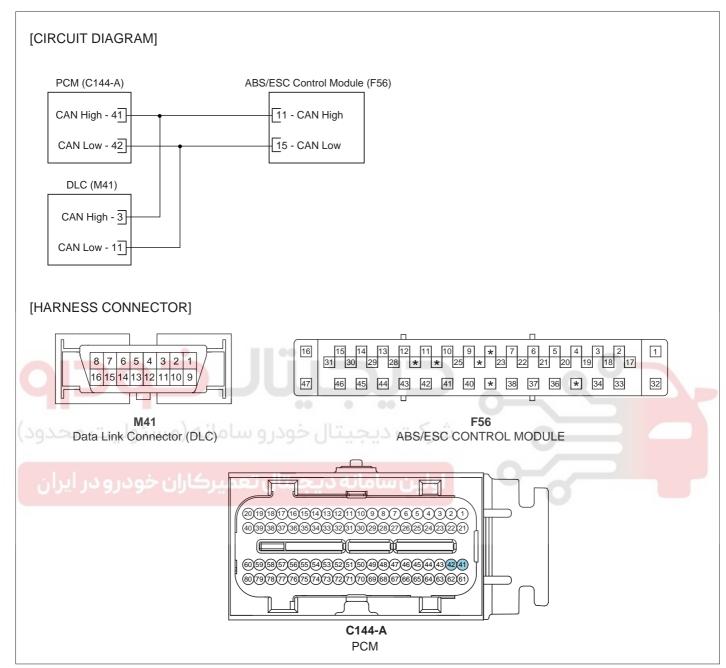
As sharing signals of engine speed, APS, gear shifting, torque reduction in ESP and various modules, active control is performed.

DTC DESCRIPTION E8588CDF

Checking CAN communication, under detecting condition, if an error within the detecting condition is detected for more than 1.5 sec., PCM sets U0001. MIL(Malfunction Indication Lamp) turns on when the malfunction lasts till consecutive 2 driving cycle.

DTC DETECTING CONDITION ECERDERO

Item	Detecting Condition	Possible cause		
DTC Strategy	 Detects failures in communication between the PCM and another or modules in the vehicle which are on the CAN serial bus. 	0		
EnableConditions	Engine Run Time 2sec. Ignition Voltage 11V	CAN BUS CAN communication module		
Threshold value	CAN communicatin error	component		
DiagnosisTime	Continuous			
MIL On Condition	2 Driving Cycle	0		


SPECIFICATION E3428724

Format	DIGITAL "0"		DIGITAL "1"(BUS IDLE)		CAN Communication Line Resistance	
	HIGH	LOW	HIGH	LOW	РСМ	ABS/ESP Control Module
CAN 2.0B	3.5V	1.5V	2.5V	2.5V	120 (20)	120 (20)

DTC TROUBLESHOOTING PROCEDURES

FL -649

SCHEMATIC DIAGRAM E0B15BB6

SGHFL7341N

FL -650 FUEL SYSTEM

SIGNAL WAVEFROM AND DATA E47AE5C

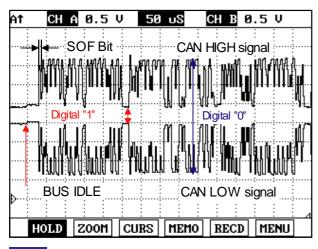


Fig.1

Fig. 1) CAN communication waveform

Monitoring CAN HIGH and LOW simultaneously is important in monitoring CAN communication waveform. When CAN HIGH signal rise to 3.5V and LOW signal drops to 1.5V - voltage difference between HIGH and LOW signal is 2V - at BUS IDLE state(DIGITAL "1") whose reference voltage is 2.5V, "0" is recognized. Besides, comparing HIGH and LOW signal if opposite waveform is detected with the reference voltage of 2.5V, Check if current cam signal transfers correctly.

Continuous "0"signal above 6BIT means the occurence of error in CAN communication. 1BIT is easily distinguished as calculating the time when "SOF"(START OF FRAME) which notifies the start of frame occurs. Check if "0"signal above 6BIT is detected continuously when monitoring CAN communication waveform.

UFBG987F

TERMINAL AND CONNECTOR INSPECTION ED6040

- Electrical systems consist of a lot of harness and connectors, poor connection of terminals can cause various problems and damge of component.
- 2. Perform checking procedure as follows.
 - 1) Check damage of harness and terminals: Check terminals for contact resistance, corrosion and deformation.
 - 2) Check connecting condition of PCM and component connector: Check terminal seperation, damage of locking device and connecting condition between terminal and wiring.

NOTE

Disconnect the pin which requires checking at male connector and insert it to the terminal at female connector for checking connecting condition. (after checking, reconnect the pin at correct position.)

3. Is the problem found?

YES

Repair the malfunctioning component and go to "Verification of Vehicle Repair".

NO

Go to "Signal Circuit Inspection".

DTC TROUBLESHOOTING PROCEDURES

FL -651

SIGNAL CIRCUIT INSPECTION

- 1. Check CAN BUS resistance in Data Link Connector
 - 1) Ignition "OFF"
 - 2) Measure the resistance between terminals 3 and 11 of data link connector (Test 1)
 - Disconnect PCM connector.
 - 4) Measure the resistance between terminals 3 and 11 of data link connector (Test 2)

Specification: PCM and ABS/ESP Control Module connected: 60 ± 3 (Test 1)

PCM and ABS/ESP Control Module disconnected: 120 ± 3 (Test 2)

5) Is CAN BUS resistance within the specification?

YES

Go to "2. Check short to ground in CAN BUS" as follows.

NO

Below 10 for both conditions(disconnected, connected): Repair short between CAN BUS lines and go to "Verification of Vehicle Repair".

120 for both conditions(disconnected, connected): Go to "4. Check CAN BUS continuity".

Infinite for both conditions(disconnected, connected) :Repair open in CAN communication circuit between DLC terminal and In-panel junction box.

- 2. Check short to ground in CAN BUS
 - 1) Ignition "OFF"
 - 2) Disconnect PCM and and ABS/ESP Control Module connector.
 - 3) Check continuity between DLC terminal 3 and chassis ground. (CAN HIGH line)
 - 4) Check continuity between DLC terminal 11 and chassis ground. (CAN LOW line)

Specification: Discontinuity (Infinite)

5) Is the measured resistance within the specification?

YES

Go to "3. Check short to battery in CAN BUS".

NO

Repair short to ground in circuit and go to "Verification of Vehicle Repair".

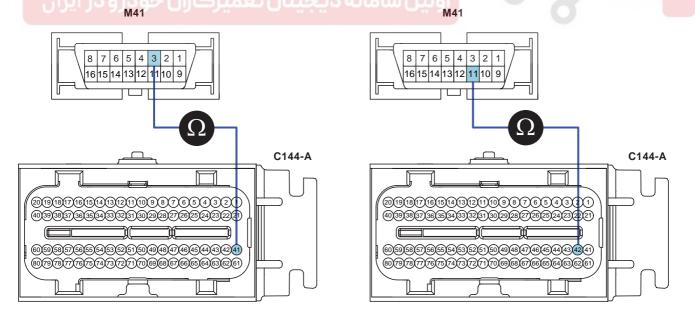
- 3. Check short to battery in CAN BUS
 - 1) Ignition "OFF"
 - 2) Disconnect PCM and ABS/ESP Control Module connector.
 - 3) Ignition "ON"

FL -652 FUEL SYSTEM

- 4) Measure the voltage of DLC terminal 3. (CAN HIGH line)
- 5) Measure the voltage of DLC terminal 11. (CAN LOW line)

Specification: 0.0V~0.1V

6) Is measured resistance within the specification with both connector disconnected?



Go to "4. Check CAN BUS continuity" as follows.

NO

Repair short to battery and go to "Verification of Vehicle Repair".

- 4. Check CAN BUS continuity
 - 1) Ignition "OFF"
 - Disconnect PCM and ABS/ESP Control Module connector.
 - Check continuity in CAN HIGH line.
 (CAN HIGH: PCM connector terminal 41, and ABS/ESP Control Module connector terminal 11, Data link connector(DLC) terminal 3)
 - Check continuity CAN LOW line.
 (CAN LOW : PCM connector terminal 42, and ABS/ESP Control Module connector terminal 15, Data link connector(DLC) terminal 11)

F56

| F56 |

SGHFL7307N

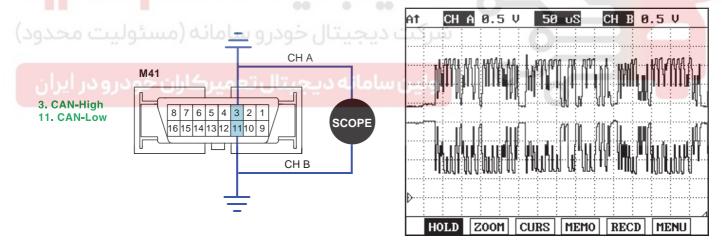
DTC TROUBLESHOOTING PROCEDURES

FL -653

Specification: Continuity(below 1.0

5) Is the measured resistance within the specification?

YES


Go to "Component Inspection".

NO

Repair open in CAN BUS line and go to "Verification of Vehicle Repair".

COMPONENT INSPECTION EF902138

- Check CAN communication waveform generation
 - 1) Ignition "OFF"
 - 2) Connect 2 channel scope to DLC terminal 3(CAN HIGH) and 11(CAN LOW).
 - 3) Ignition "ON" after connecting only PCM to CAN BUS.
 - 4) Ignition "ON" after connecting only ABS/ESP Control Module to CAN BUS.

SGHFL7308N

Specification: At Ignition "ON", the waveform same as "Signal Waveform & Data" of above signal waveform.

Different from "Signal Waveform & Data", if 1) both CAN HIGH and LOW signal are fixed at 2.5 V or

2) HIGH and LOW signal are fixed at 3.5 V and 1.5 V, respectively, it is due to communication error between modules.

5) Does correct waveform generate from each module?

YES

Go to "Verification of Vehicle Repair".

NO

Replace the module which generates poor communication waveform, and go to "Verification of Vehicle Repair".

FL -654 FUEL SYSTEM

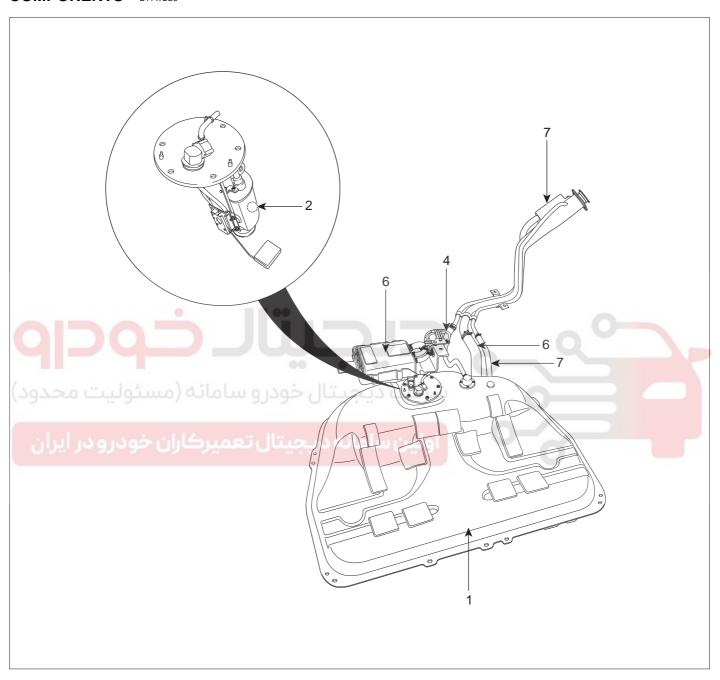
VERIFICATION OF VEHICLE REPAIR E06B18AC

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect scan tool and select "Diagnostic Trouble Codes(DTCs)" mode
- 2. Press F5(INFO) and confirm that "DTC Readiness Flag" indicates "Complete". If not, drive the vehicle within conditions noted in the freeze frame data or enable conditions
- 3. Read "DTC Status" parameter
- 4. Is "History (Not Present)" fault displayed?

System performing to specification at this time. Clear the DTC

NO


Go to the applicable troubleshooting procedure.

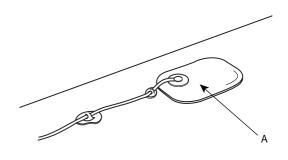
FL -655

FUEL DELIVERY SYSTEM

COMPONENTS E11472C8

- 1. Fuel Tank
- 2. Fuel Pump (including Fuel Filter and Fuel Pressure Regulator)
- 3. Fuel Filler Hose

- 4. Leveling Hose
- 5. Ventilation Hose
- 6. Canister
- 7. Fuel Tank Air Filter

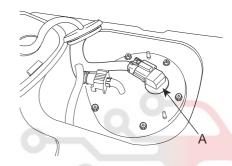

SGHFL7102L

FL -656 FUEL SYSTEM

FUEL PRESSURE TEST EF1BB6AA

1. PREPARING

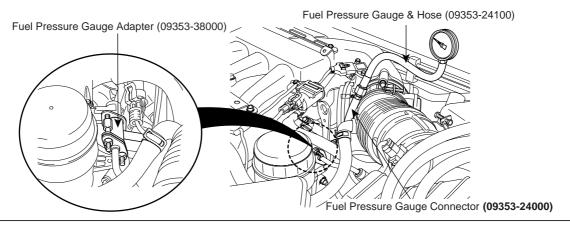
- 1. Remove the luggage floor mat in the trunk.
- 2. Open the service cover (A) in trunk.



2. RELEASE THE INTERNAL PRESSURE

- 1. Disconnect the fuel pump connector(A).
- 2. Start the engine and wait until fuel in fuel line is exhausted.
- 3. After the engine stalls, turn the ignition switch to OFF position and disconnect the negative (-) terminal from the battery.

Be sure to reduce the fuel pressure before disconnecting the fuel feed hose, otherwise fuel will spill out.


3. INSTALL THE SPECIAL SERVICE TOOL (SST) FOR MEASURING THE FUEL PRESSURE

1. Disconnect the fuel feed hose from the delivery pipe.

Cover the hose connection with a shop towel to prevent splashing of fuel caused by residual pressure in the fuel line.

- 2. Install the Fuel Pressure Gauge Adapter (09353-38000) between the delivery pipe and the fuel feed hose.
- 3. Connect the Fuel Pressure Gauge Connector (09353-24000) to the Fuel Pressure Gauge Adapter (09353-38000).
- 4. Connect the Fuel Pressure Gauge and Hose (09353-24100) to Fuel Pressure Gauge Connector (09353-24000).
- 5. Connect the fuel feed hose to the Fuel Pressure Gauge Adapter (09353-38000).

SGHFL7103L

FL -657

4. INSPECT FUEL LEAKAGE ON CONNECTION

- 1. Connect the battery negative (-) terminal.
- 2. Apply battery voltage to the fuel pump terminal and activate the fuel pump. With fuel pressure applied, check that there is no fuel leakage from the fuel pressure gauge or connection part.

5. FUEL PRESURE TEST

- 1. Disconnect the negative (-) terminal from the battery.
- 2. Connect the fuel pump connector.
- 3. Connect the battery negative (-) terminal.
- 4. Start the engine and measure the fuel pressure at idle.

Standard Value: 374 ~ 384 kpa (3.82 ~ 3.92 kgf/cm², 54.3 ~ 55.8 psi)

If the measured fuel pressure differs from the standard value, perform the necessary repairs using the table below.

	Condition	Probable Cause	Suspected Area
		Clogged fuel filter	Fuel filter
	Fuel Pressure too low	Fuel leak on the fuel-pressure regulator that is assembled on fuel pump because of poor seating of the fuel-pressure regulator.	Fuel Pressure Regulator
r	Fuel Pressure too High	Sticking fuel pressure regulator	Fuel Pressure Regulator

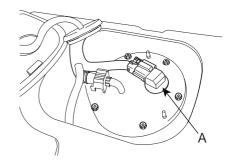
 Stop the engine and check for a change in the fuel pressure gauge reading

After engine stops, the gauge reading should hold for about 5 minutes

 Observing the declination of the fuel pressure when the gauge reading drops and perform the necessary repairs using the table below.

Condition	Probable Cause	Supected Area
Fuel pressure drops slowly after engine is stopped	Injector leak	Injector
Fuel pressure drops immediately after engine is stopped	The check valve within the fuel pump is open	Fuel Pump

EGRF009J


FL -658 FUEL SYSTEM

6. RELEASE THE INTERNAL PRESSURE

- 1. Disconnect the fuel pump connector(A).
- 2. Start the engine and wait until fuel in fuel line is exhausted.
- 3. After the engine stalls, turn the ignition switch to OFF position and disconnect the negative (-) terminal from the battery.

Be sure to reduce the fuel pressure before disconnecting the fuel feed hose, otherwise fuel will spill out.

7. REMOVE THE SPECIAL SERVICE TOOL (SST) AND CONNECT THE FUEL LINE

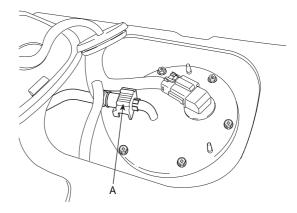
- 1. Disconnect the Fuel Pressure Gauge and Hose (09353-24100) from the Fuel Pressure Gauge Connector (09353-24000).
- 2. Disconnect the Fuel Pressure Gauge Connector (09353-24000) from the Fuel Pressure Gauge Adapter (09353-38000).
- 3. Disconnect the fuel feed hose from the Fuel Pressure Gauge Adapter (09353-38000).
- 4. Disconnect the Fuel Pressure Gauge Adapter (09353-38000) from the delivery pipe.

Cover the hose connection with a shop towel to prevent splashing of fuel caused by residual pressure in the fuel line.

5. Connect the fuel feed hose to the delivery pipe.

8. INSPECT FUEL LEAKAGE ON CONNECTION

- 1. Connect the battery negative (-) terminal.
- 2. Apply battery voltage to the fuel pump terminal and activate the fuel pump. With fuel pressure applied, check that there is no fuel leakage from the fuel pressure gauge or connection part.
- 3. If the vehicle is normal, connect the fuel pump connector.

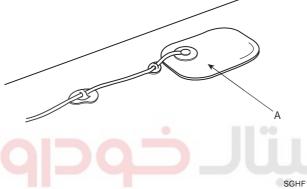

SGHFL7104L

FL -659

FUEL PUMP

REMOVAL(INCLUDING FUEL FILTER AND FUEL PRESSURE REGULATOR) E4F76DE1

- 1. Preparation
 - 1) Remove the luggage floor mat in the trunk.
 - 2) Remove the Service Cover (A).



Disconnect the Fuel Feed Quick-Connector (A).

SGHFL7106L

3. Remove the fuel pump plate cover with SST (No. : 09310-2B200) and remove the fuel pump assembly.

Fuel Pressure Regulator

SGHF16040D

3) Disconnect the Fuel Pump Connector (A).

SGHFL7107L

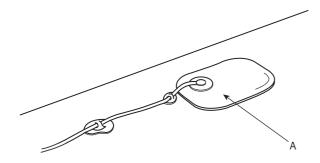
INSTALLATION E3

1. Install the Fuel Pump assembly according to the reverse order of "REMOVAL" procedure.

Tightening Torque

78.5 ~ 98.1 N·m (8.0 ~ 10.0 kgf·m, 57.9 ~ 72.4 lbf·ft)

SGHFL7105L


- Start the engine and wait until fuel in fuel line is exhausted.
- 5) After the engine stalls, turn the ignition switch OFF.

FL -660 FUEL SYSTEM

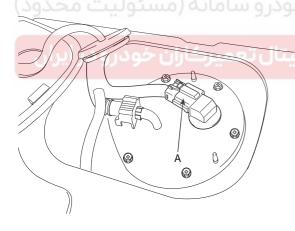
FUEL TANK

REMOVAL ED12FA2B

- 1. Preparation
 - 1) Remove the luggage floor mat in the trunk.
 - 2) Remove the Service Cover (A).

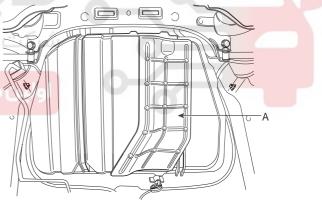
1 Domovo the co

Lift the vehicle.


4. Remove the center and main mufflers (Refer to the group "EM").

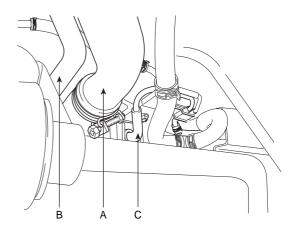
Disconnect the Fuel Feed Quick-Connector (A).

5. Remove the Fuel tank protector (A).



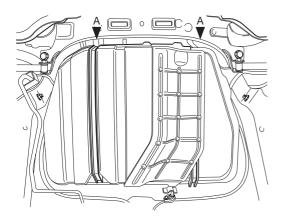
3) Disconnect the Fuel Pump Connector (A).

SGHFL7105L


- 4) Start the engine and wait until fuel in fuel line is exhausted.
- 5) After the engine stalls, turn the ignition switch OFF.

SGHF16045D

SGHFL7106L


6. Disconnect the Fuel Filler Hose (A), the ventilation hose (B) and the canister vacuum hoses (C).

SGHF16046D

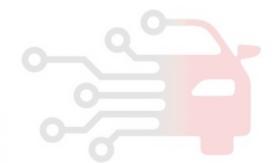
FL -661

7. Support the fuel tank with a jack and remove the Fuel Tank band (A) after unscrewing 2 mounting nut.

SGHF17033N

INSTALLATION

EDA6EC40

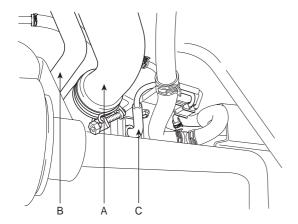

 Install the Fuel Tank according to the reverse order of "REMOVAL" procedure.

Tightening Torque

39.2 ~ 53.9 N·m (4.0 ~ 5.5 kgf·m, 28.9 ~ 39.8 lbf·ft)

شرکت دیجیتال خودرو سامانه (مسئولیت محدود)

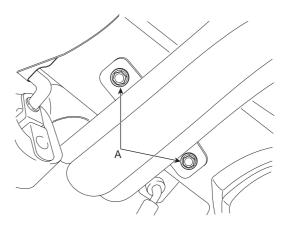
اولین سامانه دیجیتال تعمیرکاران خودرو در ایران



FL -662 FUEL SYSTEM

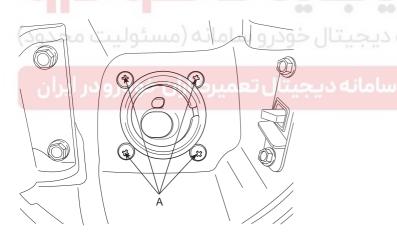
FILLER-NECK ASSEMBLY

REMOVAL E9968BB7


1. Disconnect the Fuel Filler Hose (A), the ventilation hose (B) and the canister vacuum hoses (C).

SGHF16046D

2. Open the fuel filler door, unscrew the filler-neck assembly mounting screw (A).

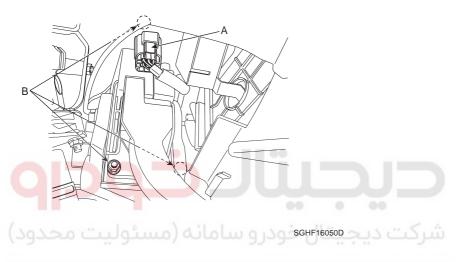

4. Remove the filler-neck assembly after unscrewing the bracket mounting bolt (A).

SGHF16049D

INSTALLATION E59018D0

Install the filler-neck assembly according to the reverse order of "REMOVAL" procedure.

SCMFL6655D


Remove the rear-left wheel & tire and wheel house cover.

FL -663

ACCELERATOR PEDAL

REMOVAL EC803F7D

- 1. Turn ignition switch off, disconnect the negative (-) battery cable.
- Disconnect the accelerator position sensor connector (A).
- 3. Remove the acceleration pedal assembly after unscrewing 3 mounting bolt (B).

INSTALLATION

E79E19AB

1. Install the acceleration pedal assembly according to the reverse order of "REMOVAL" procedure.

Tightening Torque:

 $7.8 \sim 11.8 \text{ N.m} (0.8 \sim 1.2 \text{ kgf.m}, 5.8 \sim 8.7 \text{ lbf.ft})$

